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Abstract

One common problem in viral marketing, counter-
terrorism and epidemic modeling is the efficient detec-
tion of a community that is centered at an individual
of interest. Most community detection algorithms are
designed to detect all communities in the entire net-
work. As such, it would be computationally intensive
to first detect all communities followed by identifying
communities where the individual of interest belongs
to, especially for large scale networks. We propose a
community detection algorithm that directly detects
the community centered at an individual of interest,
without the need to first detect all communities. Our
proposed algorithm utilizes an expanding ring search
starting from the individual of interest as the seed
user. Following which, we iteratively include users at
increasing number of hops from the seed user, based
on our definition of a community. This iterative step
continues until no further users can be added, thus
resulting in the detected community comprising the
list of added users. We evaluate our algorithm on four
social network datasets and show that our algorithm
is able to detect communities that strongly resemble
the corresponding real-life communities.

Keywords: Community detection, clustering algo-
rithm, social networks

1 Introduction

Most community detection algorithms aim to de-
tect all community structures in the entire network
graph, which is both tedious and computationally in-
tensive due to the large scale of current social net-
works. For purposes such as viral marketing, counter-
terrorism and epidemic modeling, we are most inter-
ested in the community surrounding a particular indi-
vidual because he/she is determined to be influential
in the spread of product information (viral market-
ing), at the heart of a terrorist organization (counter-
terrorism), or a high-risk individual for an infectious
disease (epidemic modeling). As such, it would be
more efficient to focus directly on a community that
is centered at this influential individual, compared to
first detecting all communities followed by identifying
the communities that this individual belongs to.
Hence, we propose a community detection algo-
rithm that directly detects a community centered at
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an individual of interest. Our proposed algorithm
starts from a seed user (i.e. the individual of interest)
and performs an expanding ring search to iteratively
include users into that community. Users are included
into the community based on a metric of their number
of links to other users in the community. This itera-
tive adding of users continues until no further users
satisfy the metric and could be added. Our main con-
tributions include proposing this seed-centric commu-
nity detection algorithm (Section 3) and evaluating
this algorithm on three real-life social networks and
the YouTube online social network (Section 5 and 6).

2 Related Work

There exists an extensive literature on community de-
tection algorithms and we focus on those based on a
set of seed nodes, as these algorithms are more closely
related to our work. Andersen and Lang proposed an
algorithm based on a series of random walkers, each
traversing a limited number of steps starting from a
set of seed nodes (Andersen & Lang 2006). This algo-
rithm then uses network flow to clean up the results
before returning the detected community based on a
selection of nodes that the random walkers have tra-
versed through.

Similarly, Andersen et al. proposed a local com-
munity detection algorithm based on a set of seed
nodes using a modified version of the PageRank al-
gorithm (Andersen et al. 2006). A series of random
walkers start from this set of seed nodes and each node
they traverse is considered for inclusion into the com-
munity based on the value of their resulting PageRank
vector. Our proposed algorithm differs from the al-
gorithms by Andersen and Lang, and Andersen et al.
in that we detect communities surrounding a single
seed node whereas they require a set of seed nodes.
Also, our method differs in the definition of the met-
ric that is used to determine whether a node should
be included in a community.

Similarly, there are various algorithms for detect-
ing communities using a single seed node. Clauset
introduced the local modularity R which measures
how much a node is on the boundary of the commu-
nity (Clauset 2005). Clauset then starts from a seed
node and iteratively adds neighbouring nodes into the
community that maximizes the modularity R, result-
ing in the detection of a local community. Our pro-
posed algorithm differs from Clauset’s in our defini-
tion of modularity and the option to modify this mod-
ularity to detect communities of different strength.

In the same spirit as Clauset (i.e. the local max-
imization of modularity), Luo et al. proposed an al-
gorithm that starts from a seed node and uses an
iteration of adding and deleting nodes until the local
maximization of modularity at the eventual commu-



nity (Luo et al. 2006). However, this method could
potentially exclude the seed node and result in a de-
tected community without the seed node. This poten-
tial exclusion of the seed node is the main difference
with our algorithm, which ensures that the seed node
is still included in the detected community.

3 Methodology

Most definitions of a community are generally based
on the concept that the community comprises individ-
uals who are more densely connected to each other in
the community than to those outside the community.
Specifically, Radicchi et al. introduced the concept of
strong and weak communities where strong communi-
ties comprise individual users who each has more links
within this community than outside, while weak com-
munities comprise users who collectively have more
links within this community than outside (Radicchi
et al. 2004). In particular, we implemented a modified
version of Radicchi et al.’s definition of a strong com-
munity by introducing a community strength factor
for adjusting the size and strength of the community
detected.

We first model the social network as an undi-
rected, unweighted graph, G = (N,E) where N
and E respectively refer to the set of nodes/users and
edges/links in the graph. Undirected links correspond
to social links that are reciprocal and reflective of real-
life friendships, thus our choice of undirected links
for the algorithm. While our paper uses unweighted
links, the algorithm could cater for weighted links by
implementing a simple filtering scheme based on the
weight of links. This filtering scheme would work in
such a way that links below a certain threshold weight
are excluded for consideration as part of the graph.

Each user ¢ € N has k; links, with each link point-
ing to another user either within or outside the com-
munity. The number of links pointing to users within
the community is denoted as k;" and those outside
the community as k%“*. In addition, we introduce a
community strength factor f that allows us to adjust
the size and strength of the detected communities.
Our definition of a community is as denoted:

Kn > kP x f (1)

Our proposed algorithm differs from that of Radic-
chi et al. in two ways. Firstly, we introduce a com-
munity strength factor f to their original definition
of a strong community, thus allowing us to adjust the
strength and size of the community detected. Sec-
ondly, the method proposed by Radicchi et al. takes
an entire graph and iteratively divides it until the
separate communities emerge, whereas our algorithm
starts from a single seed user and gradually builds up
the community surrounding this user.

Our algorithm (as presented in Algorithm 1) can
be broadly divided into the following steps:

1. Identify a user of interest as the seed node and
include this user as part of the community.

2. Retrieve all neighbouring nodes of the seed node.
Include these 1st degree (one-hop) neighbours as
part of the community.

3. Retrieve all the 2nd degree (two-hops) neigh-
bours of the seed node (i.e. neighbours of the
neighbours of the seed node). Include them as
part of the community if they fulfill our defini-
tion of a community as stated in Equation 1.

Algorithm 1 Seed-centric Community Detection

Input: G = (N,E): An undirected, unweighted
social network graph, s € N: the seed node
Output: detectedCommunity: A list  of
nodes in the community centered at the seed
node s
begin
Add Node s to detectedCommunity
for all Neighbour n, of Node s do
Add ng to detectedCommunity
end for
for all Neighbour n, of Node s do
for all Neighbour m,, of Node nys do
Add m,, to listNeighbours
end for
end for
while listNeighbours # NULL do
for all Node n in listNeighbours do
if k" > k2 x f then
Add n to detectedCommunity
Add n to listNewMembers
end if
end for
listNeighbours = NULL
for all Node n in listNewMembers do
for all Neighbour m,, of Node n do
Add m,, to listNeighbours
end for
end for
end while
return detectedCommunity
end

4. Repeat Step 3 for the 3rd, 4th, nth degree neigh-
bours until no further nodes can be added to the
community.

5. The eventual list of included nodes would be the
community centered at the seed node.

As our algorithm aims to detect a community cen-
tered at an individual of interest, Step 1 is to identify
such a user as the seed node s. In real-life, this seed
node s can correspond to an individual with a large
number of links to other users, or a person in a partic-
ularly influential position (e.g. the CEO of a company
or the director of a research institute). Next, Step 2
includes all neighbours of the seed node s as part
of his/her community, which is reasonable as these
neighbours are one-hop friends of seed node s who
he/she is more likely to interact with frequently. Fol-
lowing which, Steps 3 and 4 are basically iterative
steps that continuously include nodes (which satisfy
Equation 1) in an expanding ring search. This ex-
panding ring search coupled with our definition of a
community (Equation 1) ensures that the search does
not propagate too far, as nodes that do not satisfy
this definition will not further propagate the search.

4 Experimental Setup

In order to validate the correctness of the commu-
nities detected by our algorithm, it is important to
evaluate our community detection algorithm on so-
cial networks where we know the ground truth (i.e.
the real-life communities). For this purpose, we se-
lected the Zachary Karate Club, Doubtful Sound Dol-
phins and Santa Fe Institute Collaboration datasets
which have been used by many authors to establish
the correctness of their community detection algo-
rithms (Girvan & Newman 2002, Arenas et al. 2008).



The Zachary Karate Club and Doubtful Sound
Dolphin datasets comprise 34 and 62 nodes respec-
tively, where each dataset is further divided into two
different communities (Zachary 1977, Lusseau et al.
2003). The Santa Fe Institute Collaboration dataset
comprises 118 nodes which are further divided into
four communities, each representing a different field
of research (Girvan & Newman 2002). These datasets
are chosen as we know the ground truth of the actual
real-life communities and can compare them to the
communities detected by our algorithm.

Next, we also evaluate our algorithm on a large-
scale online social network based on YouTube. This
dataset comprises 1.1 million nodes, 2.9 million edges
and nodes may join any of the 47 different YouTube
groups (Tang & Liu 2009).! The main challenge with
evaluating community detection algorithms on online
social networks is the verification of actual real-life
communities (i.e. establishing the ground truth). In
this case, we adopt the best approximation of ground
truth by using the YouTube groups that the users be-
long to. Users who are members of the same YouTube
group are inferred to be members of the same real-life
community. In addition, we further validate our algo-
rithm using network properties such as average clus-
tering coefficient, average path length, average degree
and diameter as measures of the topological structure
of the detected communities.

5 Evaluation on Real-life Social Networks

We begin our evaluation on the three real-life social
networks by first selecting the seed nodes for each
social network. For the Zachary Karate Club, we
chose the club president and instructor as the two
seed nodes, who also have the highest number of links.
Similarly, for the Doubtful Sound Dolphins, we chose
two nodes with the highest number of links in their
respective communities as the seed nodes. Likewise
for the Santa Fe Institute Collaboration Network, we
selected one seed node from each field of research who
also have one of the highest number of links.

5.1 Overview of Results

We first evaluate the correctness of our algorithm by
examining the precision and recall results on the three
datasets. Precision refers to the number of correct
nodes classified out of all nodes classified while recall
indicates the number of correct nodes classified out
of all actual nodes in the community. In terms of re-
call, our algorithm is able to detect almost all nodes
(>98.5%) that belong to their respective communi-
ties. We were able to achieve 100% recall for both the
Doubtful Sound Dolphins and Zachary Karate Club
datasets. The recall rate for the Santa Fe Institute
dataset was also high at 98.5%.

Similarly, the results for precision are also rela-
tively high with our algorithm correctly classifying
97.6%, 87.2% and 84.9% of nodes into their actual
communities for the Doubtful Sound Dolphins, Santa
Fe Institute and Zachary Karate Club datasets, re-
spectively. While the results for precision are high, it
is worthwhile to further examine and understand why
some nodes are incorrectly classified.

5.2 Further Analysis of Results

We now analyze the Zachary Karate Club dataset
where Fig. 1 shows the communities detected (circled

'Tang and Liu have made this dataset publicly available at
http://socialcomputing.asu.edu/datasets/YouTube2.

________ ~ @ O Ground Truth
4§ {5 Seed Nodes
/ ===z: Detected Communities

—— e —
-
~

e mm————

(¢} D Ground Truth - -~
## {8} Seed Nodes
=== Detected Communities

Figure 2: Doubtful Sound Dolphins

with a dashed line) by our algorithm compared to
the ground truth of actual communities (indicated by
different shapes and colour of the nodes). For the six
nodes that were mis-classified into the wrong commu-
nity, four of them (a two-third majority) had direct
links to both seed nodes in the two respective com-
munities (i.e. the club president and instructor). The
remaining two nodes were directly linked to the seed
node in one community while being one-hop away
from the seed node of the other community. This close
proximity of the mis-classified nodes to the seed nodes
of the two communities show that the mis-classified
nodes actually act as effective bridges or middle-men
between the two communities. As such, they would
be better classified as members of both communities
rather than just belonging to a single community.
While the results are different from the ground
truth, this is consistent with the observations of many
authors that there are overlapping communities in so-
cial networks and individuals may belong to multi-
ple communities (Palla et al. 2005). Furthermore, in
Zachary’s study of the karate club, he also noted that
“not all individuals in the network were solidly mem-
bers of one faction or the other”, thus further sup-
porting the results of our algorithm (Zachary 1977).
Similarly, the one mis-classified node for the
Doubtful Sound Dolphins acts as such a bridge be-
tween the two communities. As shown in Fig. 2, this
node is on the edge of both communities and have one
link into each community. Hence, this node can eas-
ily belong to either community and would be better
classified as belonging to both communities, consider-
ing its topological links and position in the network.
Other authors also shared similar views that if a node
has only a single link to a community, it should be
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Figure 3: Santa Fe Institute Collaboration Network

classified as part of that community (Girvan & New-
man 2002). These results show that while the preci-
sion of our algorithm does not fully match that of the
ground truth, the detected communities are reason-
able and meaningful groupings of the nodes.

While we achieved a high recall rate of 98.5% for
the Santa Fe Institute dataset, the unsuccessful 1.5%
is attributed to three (green, hexagon) nodes being
mis-classified, as shown in Fig. 3. These three nodes
were classified as part of the diamond community
while the ground truth dictates that they belong to
the hexagon community. However, an analysis of the
actual topological links implies that these three nodes
are better suited as members of the diamond commu-
nity. Specifically, one of these nodes has four links
to the diamond community but only one link to the
hexagon community (while the other two misclassi-
fied nodes have only one link to this node). Based on
this topological analysis, these nodes would be better
classified as part of the diamond community.

Similarly, while we achieved a relatively high preci-
sion rate of 87.2% for the Santa Fe Institute dataset,
the unsuccessful 12.8% was largely due to the mis-
classification of members of the hexagon and circle
communities as part of the square community. Like
the Zachary Karate Club dataset, almost half of these
mis-classified (intermediate) nodes are directly linked
to the seed node and thus should also be classified
as part of the square community. For the remaining
nodes, they are directly linked to these intermediate
nodes and all of them have more links to these inter-
mediate nodes than to other nodes. Therefore, they
should also belong to the same community as these
intermediate nodes (i.e. the square community).

6 Evaluation on YouTube Social Network

After evaluating our algorithm on three real-life so-
cial networks, we now evaluate it on the large-scale

Table 1: Network Statistics of YouTube Dataset

Network Property Detected Community Control

Min. Maz. Avg. Group
No. of Nodes 701 7241 1676 22180
YouTube Group Overlap 67.8% 93.7%  78.0% N.A.
Avg. Degree of Links 3.54  13.97 8.25 8.66
Avg. Clustering Coeff. 0.14 0.36 0.28 0.13
Avg. Path Length 2.14 3.53 2.82 4.08
Diameter 4 7 5.4 11

YouTube social network. The main challenge in this
evaluation is the lack of an established ground truth
of real-life communities, unlike the three real-life so-
cial networks previously evaluated. As such, we best
approximate this ground truth using YouTube groups
where users belonging to the same group are deemed
to be in the same real-life community.

As YouTube groups are an approximation of the
ground truth of real-life communities, we further eval-
uate the communities detected by our algorithm using
topological measures of average clustering coefficient,
average path length, average degree and diameter.
These are suitable metrics for evaluation as communi-
ties display typical characteristics of a high clustering
coeflicient and average degree with low average path
length and diameter, especially when compared to the
overall network.

6.1 Experiment Dataset and Control Group

In the YouTube social network dataset, there exists
users who do not join any YouTube groups. Since
YouTube groups serve as ground truth for our evalu-
ation, we consider only users who have joined at least
one YouTube group, in our experiments. Based on
this criteria, there are 22,693 users who have joined
at least one YouTube group. This set of users will
be used to evaluate our algorithm as we are able to
compare the detected communities with the actual
YouTube groups they belong to.

As a control group for comparing network statis-
tics, we selected the largest connected component
from this set of 22,693 users (who have joined at least
one YouTube group). This largest connected compo-
nent comprises 22,180 users and would be used as the
control group to compare against the detected com-
munities (of our algorithm) in terms of average clus-
tering coefficient, average path length, average degree
and diameter. An ideal community detection algo-
rithm would detect communities that exhibit a higher
clustering coefficient, and shorter average path length
and diameter compared to the overall network (i.e.
our control group).

Similar to the selection of seed users for the three
real-life social networks, we selected seed users for the
YouTube dataset based on users with a high number
of links. This selection criteria corresponds to the
aim of our algorithm which is to detect communities
centered at individuals of interest, such as influen-
tial or well-connected individuals. We first identify
a set of users that are in the top 1% of the dataset,
in terms of their number of links. From this set of
users, we selected 10 users as the seed nodes for our
algorithm. Using our algorithm, we then attempt to
detect communities centered at each of these 10 users
and measure the network statistics of the resulting
10 communities. In particular, we compare the av-
erage network statistics of these communities against
that of the control group. Using the average result
(from these 10 communities) avoids the effect of any



random or outlier results that may be unique to any
particular community.

6.2 Comparison of Network Statistics

Table 1 shows the (minimum, maximum and aver-
age) network statistics of our detected communities
compared to that of the control group. The YouTube
group overlap measures how many other users in the
detected community belong to the same YouTube
group as the seed user. The high average result of
78% show that our algorithm is able to accurately
detect communities where most of its users belong to
the same YouTube group (as the seed user), an ap-
proximation of their real-life communities.

The YouTube group overlap result is not 100%
due to the unique nature of YouTube groups where
users who join such groups are producers/uploaders
of videos related to that group. On the contrary,
there are users who are only interested in viewing such
videos but do not produce/upload videos. These users
simply become friends with members of such groups
and are able to be alerted about their new videos
without having to join their YouTube groups. Even
with such users, our algorithm is able to detect com-
munities that are up to 93.7% accurate compared to
the real-life communities

Despite the small average size of the detected com-
munities, the average degree of links of these commu-
nities are very similar to that of the control group
(differing only by 4.7%). This result shows that the
detected communities comprise users who are well-
connected among themselves (indicated by a high av-
erage degree of links), despite having an average com-
munity size that is less than 8% of the control group.

In addition to being well-connected, the detected
communities are also highly cohesive based on an av-
erage clustering coefficient that is two times higher
than that of the control group. Another observa-
tion is the lower average path length and diameter
of the detected communities compared to that of the
control group. A lower average path length and di-
ameter means that nodes within these communities
are able to reach each other in a smaller number of
steps, which is also an indication of a cohesive and
well-connected community.

Based on our approximation of ground truth, our
proposed algorithm is able to detect communities that
closely resemble real-life communities (up to 93.7%).
The network statistics of these detected communities
further illustrate the effectiveness of our algorithm.
Specifically, the high clustering coefficient and aver-
age degree of links, and low average path length and
diameter (of the detected community) indicate that
our algorithm detects communities which are highly
cohesive and well-connected, especially when com-
pared to the control group.

7 Conclusion

We proposed a community detection algorithm for
finding a community centered at an individual of in-
terest, using an expanding ring search starting from
this individual. At each progressive stage of the ex-
panding ring search, we decide whether or not to add
a user into this community based on our definition
of a community. This definition is derived from the
number of internal and external links of a user, cou-
pled with an adjustable community strength factor.
Our algorithm then continues iteratively until no fur-
ther users can be added, thus resulting in the detected
community comprising the list of added users.

In addition, we evaluated our algorithm on three
real-life social networks to compare the detected com-
munities to the ground truth of actual real-life com-
munities. The results show that our algorithm is able
to detect the actual communities at a high level of
precision and recall rate of up to 97.6% and 100% re-
spectively. Experiments on the YouTube social net-
work also show that our algorithm is able to detect
communities that closely resemble real-life communi-
ties (based on YouTube groups), up to an accuracy
of 93.7%. Our evaluation of clustering coefficient, av-
erage path length, average degree of links and diam-
eter also indicates that the detected communities are
highly cohesive and well-connected.
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