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ABSTRACT

There has been a growing interest in recommending trips for tourists
using location-based social networks. The challenge of trip recom-
mendation not only lies in searching for relevant points-of-interest
(POlIs) to form a personalized trip, but also selecting the best time
of day to visit the POIs. Popular POIs can be too crowded dur-
ing peak times, resulting in long queues and delays. In this work,
we propose the Personalized Crowd-aware Trip Recommendation
(PersCT) algorithm to recommend personalized trips that also avoid
the most crowded times of the POIs. We model the problem as an
extension of the Orienteering Problem with multiple constraints.
We extract user interests by collaborative filtering and we propose
an extension of the Ant Colony Optimisation algorithm to merge
user interests with POI popularity and crowdedness data to recom-
mend trips. We evaluate our algorithm using foot traffic informa-
tion obtained from a real-life pedestrian sensor dataset and user
travel histories extracted from a Flickr photo dataset. We show
that our algorithm out-performs several benchmarks in achieving a
balance between conflicting objectives by satisfying user interests
while reducing the crowdedness of the trips.

Keywords
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mendation

1. INTRODUCTION

Location-based social networks (LBSNs) has been a rapidly de-
veloping field in the last few years. The volume of data gener-
ated by LBSNs allows data miners to extract accurate user infor-
mation to provide better service in target applications. One ap-
plication heavily influenced by LBSNs is trip recommendation for
tourists. Mobile-based pocket tour guides have been deployed for
small scale applications like museum tour guides [2] or large city
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guides [19]. Despite these successes, trip recommendation is still a
non-trivial problem due to the following challenges:

1. Relevant Points-of-Interest (POIs) must be selected from a
large collection of POIs. A naive approach is to select the
top k most relevant POIs and list the results, as in POI rec-
ommendation using Collaborative Filtering (CF) [22][24].
However, organizing a trip from such a list can yield a so-
lution that is far from optimal, as the POIs can be spatially
distant and the user might not have enough time to visit all
POlIs in a single trip.

2. Constructing an optimal solution requires all permutations
of the POIs to be computed, which is an NP-hard problem.
The computational cost will be prohibitive even for a small
number of POIs.

3. For POIs of different categories, different peak hours may ap-
ply. Visiting a POI during the peak time may result in a long
wait time, poor service and sometimes a higher price. Previ-
ous studies on temporal POI recommendation have focused
on recommending popular times at a POI [23][24] rather than
avoiding crowded times.

Various trip recommenders have been proposed to recommend
personalized trips [11][25]. However, previous studies have failed
to consider that some POIs may satisfy a user’s interest but can be
too crowded at times. Fortunately, pedestrian traffic data from sen-
sor deployments [14] is making it possible to refine tour recommen-
dation based on how crowded places are at different times of the
day. In this paper, we propose the personalized crowd-aware trip
recommendation (PersCT) framework, which recommends person-
alized trips that avoid crowded areas to users. To illustrate an ex-
ample, we show two trips manually planned with three POIs in the
city of Melbourne, Australia (Figure 1).

Figure 1(a) and 1(b) show the trips marked on a map and Fig-
ure 1(c) shows the normalized pedestrian foot traffic captured by
nearby sensors at the POIs (details in Section 5). Colors of the
POIs in Figure 1(a) and 1(b) correspond to different crowdedness
levels in Figure 1(c). POI1 (David Jones) is a shopping mall and
the peak foot traffic is between 12:00 and 17:00. POI2 (Flinders
Street) is near a famous laneway, a visitor center and a train sta-
tion/historical site whose pedestrian volume peaks at 17:00. POI3
(Lygon Street) is a popular Italian dining destination and the peak
time occurs after 20:00. Assuming a user leaves the airport coach
terminal at location 1 at 12PM and the destination is a hotel at loca-
tion 5, trip 1 might be a typical trip where the user interest is maxi-
mized: the user visits POI2 between 13:00 - 16:00 for sightseeing,
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Figure 1: An example of two trips planned manually in the City
of Melbourne with 3 POIs. (a) Trip 1: maximizing interest. (b)
Trip 2: avoiding crowds. (c) Normalized pedestrian volume
from [14]. Legend indicates crowdedness in (a) and (b).

POI1 between 16:00 - 19:00 for shopping and POI3 between 19:00
- 21:00 for dining and relaxation. However, the crowdedness of
this trip would be very high as shown in Figure 1(c). In contrast,
trip 2 offers a different plan: visit POI3 between 13:00 - 16:00 for
lunch and sightseeing, POI1 between 16:00 - 19:00 for shopping
and POI1 between 19:00 - 21:00 for dinner and a walk by the Yarra
river. By slightly shuffling the order of the visits, crowds can be
avoided while the user interest can still be satisfied. (And lunch at
popular restaurants is usually cheaper than dinner!)

With only three POls, it is possible albeit difficult to manually
plan a trip that avoids crowds. However, the number of POIs in
a city is typically much larger than three, and the search space
increases exponentially. Therefore, algorithmic approaches must
be efficient to perform trip recommendation. In this work, we de-
fine the problem as an extension of the Orienteering Problem (OP)
[8], which models each POI with a profit score and finds the trip
that collects the maximum total profit subject to certain time con-
straints. We define the profit to be a time-varying function that com-
bines POI popularity, user interest and crowdedness of the POls
at various times of the day. With this information, we formulate
the personalized crowd-aware tour recommendation problem as a
multi-objective time-dependent Orienteering Problem. We propose
the PersCT algorithm, which is an extension of the Ant Colony Op-
timisation (ACO) metaheuristic, to solve the problem. Using this

algorithm, trips that avoid the crowds while still satisfying user in-
terests can be found efficiently. Our main contributions are:

e We formulate the personalized crowd-aware tour recommen-
dation problem.

e We combine multiple objectives and propose the PersCT al-
gorithm that can efficiently find a solution that achieves a
balance between conflicting objectives such as user interest
and crowdedness of trips.

o We evaluated the effectiveness of our algorithm using a Flickr
photo dataset and pedestrian count dataset, both in the city of
Melbourne.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work in tour recommendation and planning. Section
3 presents relevant definitions and formally defines the problem.
In Section 4 our trip recommendation framework is discussed. In
Section 5 we present the evaluation and discussion.

2. RELATED WORK

Suggesting interesting locations to tourists is a popular problem
in data mining. We classify previous studies in this field into three
categories: (1) POI recommendation, (2) itinerary recommenda-
tion, (3) the orienteering problem in operations research.

POI recommendation. In POI recommendation, the problem is
to suggest a list of the top k most relevant POIs to a user [22]. Tech-
niques from traditional recommender systems such as user-based
collaborative filtering [23], item-based collaborative filtering [21]
and matrix factorization [1] have been extensively studied. More
recent work also considered recommending the best time of visit
[24]. For this category of studies, the POIs are often treated as spa-
tial items and the main goal is to find correlated user-item pairs.
This differs from our work and the other two categories (itinerary
recommendation and trip planning in operations research) as the
ranking of POIs in the list suggests relevance but not the order of
visit. Moreover, there is no overall time budget constraint, and trav-
elling time is not considered. In this work, we find relevant POIs as
well as ordering the POIs into a trip to satisfy constraints such as
maximum allowed trip time.

Itinerary recommendation. Itinerary recommendation is to sug-
gest a sequence of POlIs to visit, which is similar to our problem.
One of the early state-of-the-art itinerary recommenders was pro-
posed in [3] where the authors used geo-tagged Flickr photos to
infer user interest and recommend multi-day itineraries using a re-
cursive greedy algorithm. In [12], user check-in data were mined
and an apriori-based algorithm was proposed to find optimal trips
under multiple constraints, despite that the computational cost was
high. In [7], customized tours in urban areas were recommended by
utilizing POI categories and suggesting different types of venues.
More recently, [11] proposed time-based user interest and demon-
strated advantages over the use of frequency-based popularity mea-
sures in tour personalization. In [10], personalized travel sequences
in different seasons were recommended by merging textual data
and view point information extracted from images. Our work dif-
fers from the above since we additionally focus on balancing the
crowdedness of a trip with various objectives. To the best of our
knowledge, this work is the first that utilizes crowdedness informa-
tion for trip recommendation, in conjunction with POI popularity
and user interests.

Orienteering problem in operations research. We formulated
our problem based on the Orienteering Problem (OP) in operations
research. The name orienteering problem was initially derived from



the sporting game of orienteering [18]. Given the origin and des-
tination, the objective is to traverse a subset of a graph and select
paths with the maximum award while still satisfying a time con-
straint. OP has been proven to be NP-hard [4]. A survey of the
tour planning algorithm with an OP formulation can be found in
[5]. Since our problem has a time-varying objective function, we
only review time-dependent variations of OP. In [20], a fast solu-
tion for the time-dependent OP was proposed, although the authors
assumed that early starters will also arrive early at their destina-
tions. In [19], a city trip designer was proposed to plan tours that
consider the opening and closing times of a POL. In [9], the uncer-
tain wait time problem was addressed using a metaheuristic algo-
rithm to plan tours for theme park visitors. In [6], a time-varying
travel cost was modelled and trips were recommended for a group
of users. These studies mainly focused on the trade-off between
efficiency and optimality of the solution rather than the relevance
of the trips to the users. Moreover, the trips are not personalized
and the same origin destination pair will result in the same trip for
all users.

The most recent work relevant to ours is [25], where the authors
proposed a tree-based algorithm to solve the personalized trip rec-
ommendation problem. While [25] focused solely on personaliza-
tion of trips, our focus is on balancing and merging multiple objec-
tives such as crowdedness of the POIs and user interest,

3. PRELIMINARIES

In this section, we give the necessary definitions and formally
define the problem.

Definition 1: POI Graph. For a region with W POlIs, we con-
struct an undirected complete weighted graph G with W nodes be-
ing the POIs, and edge weights e(i, j) being the travel time between
two POIs. For simplicity, we assume travel time is symmetric, the
mode of transport is walking and the distance to travel between two
nodes is a straight line, as in [1 1]'. Travel time between two POIs
can then be computed by dividing their distance by the speed of
walking. For a certain user, atrip R=< O, P, P, ..., Pyy, D > is a
non-cyclic path on the graph G where O = origin, D = destination
and P,i=1,..M M <W —2, are the POIs visited. The time that
the user arrives at each POl is T'= < Tp, T}, ..., Tyr, Tp >. The
duration that the user spent visiting each POl is Du = < Dug, Duy,
..., Dupg, Dup >. The travel history H of auser H = < Ry, Ry, ...,
R; >, where L > 1.

Definition 2: Time Cost. The time cost C(R) of a trip R is the
sum of all travel times and the time spent visiting each of the POIs
of a trip:

M—1M M
CR)= "} ) e(R(),R())+ Y Du, j=i+1 (D)
i=1 j=2 k=1
where R(i) is the ith POl in trip R.

Definition 3: POI Popularity. For POI i, we calculate the POI
popularity Pop(i) by counting its occurrence Ocr(i) in the travel
history of all users and normalize the values to [0,1]:

Ocr (i)
Pop(i) = 2
op(i) max(Ocr(j,j € W)) @
For example, if there are 3 POIs in total, and Ocr(1) =10, Ocr(2) =
50, Ocr(3) = 20, then Pop(1) =0.2, Pop(2) =1, Pop(3) =0.4.

Definition 4: User Interest. We define the interest score Int (u, i)
of a user u to a POI i as the similarity between POI i and the past
visiting history of the user. More on this in Section 4.2.

!Other travelling distance functions and modes of transport can
also be incorporated into the problem

Definition 5: POI Crowdedness. For POI i, we define the
crowdedness at time ¢ as the foot traffic volume U divided by the
maximum foot traffic detected during a certain period of time 7):

U(it)

Crd(it) = UGt € Ty))

3

For example, a sensor reported the pedestrian foot traffic at a POI to
be <100, 200, 300> at 9:00, 10:00 and 11:00. The maximum pedes-
trian volume observed for this POI is 500. Therefore the crowded-
ness during these three hours is <0.2, 0.4, 0.6>.

3.1 Problem Definition

Given a user # with an origin O, a destination D, a start time ¢
and a time budget ¢, we recommend a trip R such that the following
objective function is maximized:

W—1 W

max( ) Zx(i,.nt)pr(umz)) )
i=1 j=2

where the profit, pr(u, j,t), is defined as

(Pop(j) +Int(u, j))*

Crd(j,t) ®)

pr(u, j,t) =

The function x(i, j,¢) equals to 1 if P; and P; are consecutively vis-
ited POIs in R, and x(i, j,#) = 0 otherwise. The parameter 7 is the
arrival time at POI j. We optimize the objective function such that
the following constraints are satisfied: (1) the total time cost is no
greater than the time budget, (2) no POIs are visited more than
once, and (3) the trip always starts at the origin and finishes at the
destination.

Equation 4 is a multi-objective time-varying function that merges
POI popularity Pop, user interest Int and POI crowdedness Crd (i, )
information at the time of the visit. As we aim to maximize Pop and
Int while minimize Crd, we use a parameter Y to control the bias
towards popularity and interest or crowdedness. A higher value of
v will place more weight on selecting relevant POIs and a lower
v will encourage searching for less crowded locations. We show
in Section 5 the effect of tuning y on the behaviour and perfor-
mance of the proposed algorithm. Based on the above definitions,
we present our trip recommendation framework in the following
section.

4. TRIP RECOMMENDATION

In this section, we present our trip recommendation framework.

4.1 Overview

There are three main stages to our trip recommendation frame-
work, namely POI popularity modelling, user interest modelling
and the PersCT algorithm. Figure 2 shows an overview of our sys-
tem. POI popularity is given by Equation 2, which defines a nor-
malized popularity score for each POI by counting its occurrence in
the travel histories of all past users. The reason for including such
information is that when a new user with no past travel histories is
using the system, popular locations can still be used to find a so-
lution. This addresses the "cold start" problem frequently faced by
user modelling algorithms such as collaborative filtering. The out-
put of Stage 1 is a vector of POI popularities, Pop. The second step
is the modelling of user interest. For users who have at least three
visited POIs in the past, we infer user interest for unvisited POIs
by performing User-Based Collaborative Filtering (UBCF, more on
this in the next section). The result of UBCF is a vector of scores
Int corresponding to user interest for each POI. The sum of Pop
and Int are used as part of the objective function that has to be
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Figure 2: System Overview

maximized (Equation 5). The third stage is to combine foot traffic
information with Pop and Int to obtain the objective function for
the multi-objective time-dependent orienteering problem, which is
then solve under various constraints as defined in Section 3.1. Since
OP is NP-hard, our trip recommendation problem is also NP-hard.
In addition, the crowdedness objective is a time-varying function,
which is difficult to optimize using exact algorithms like dynamic
programming or off-the-shelf optimisation solvers. To this end, we
adapt and extend the Ant Colony meta-heuristic to find a solution
(Section 4.3 to 4.5).

4.2 Modelling User Interest

We implement a user-based collaborative filtering (UBCF) algo-
rithm to personalize user interest based on previous travel histories
due to its simplicity and proven performance in POI recommenda-
tion [23]. We create a user-POI matrix by counting the number of
times a user has visited a POI. The ratings user u gives to item i is
calculated as an aggregation of the ratings given by k£ most similar
users of u:

Tui = aggr(ru’,i)7 u' el

where U is the set of k most similar users. The cosine similarity
was used as the similarity measure between user « and u':

Zru,i Ty i
2
\/Z’%J\/Z"u’,i

In addition, we selected the mean function as the aggregation func-
tion, and set k = 15 (see Section 5). We compute a user-specific
interest score Int(u,i) for every unvisited POI of each user. Since
this only needs to be computed once, the running time is negligible.

4.3 The Ant Colony Meta-heuristic

In this work, we extend the Ant Colony Optimization Meta-
heuristic (ACO) [4] to solve the multi-objective time-dependent
optimization problem. For completeness, we briefly introduce the
ACO algorithm in this section (Algorithm 1). In ACO, software
agents, or the ants, search for good solutions to a given optimiza-
tion problem. The ants are involved in two procedures: (1) heuris-
tic solution construction (2) pheromone trail update. In the solution
construction phase, a heuristic search probability function is com-
puted by each ant to find the next destination. In the pheromone

(©)

sim(u,u’) =

Algorithm 1: Ant Colony Optimization Metaheuristic

Data: G: a graph
Result: P: a path on G
1 begin

2 Initialize pheromone trail over G

3 while termination condition not met do
4 Initialize ants

5 /[construct solution

6 while 3 ant € ants not finished do
7 for ant € ants do

8 Find next node

9 // online trail update

10 Update pheromone trail

1 Check if ant has finished

12 Update global best ant

13 Perform local search

14 /1 offline trail update

15 | Update pheromone trail with global best ant
16 | return path P traversed by the best ant

trail update phase, the ants "communicate" with one another by
updating a trail matrix 7M. The heuristic search function can be
as simple as a nearest neighbour search. The trail update involves
two parts, online and offline update. In online update, after find-
ing the next destination P, an ant immediately updates TM (P;
P.y1), reinforcing locations with large visiting probabilities. In of-
fline update, only the best ant updates the trail matrix with every
path visited in its trip. Local heuristic search can also be used with
ACO. After a number of iterations, the trip of the best ant is output
as the result.

4.4 PersCT Algorithm

In this section, we discuss the details of our PersCT algorithm in
three subsections: heuristic search function, local search and trail
update strategy.

4.4.1 Heuristic Search Function

For each ant, the next POI to visit is found using a heuristic prob-
abilistic search function. The original Ant Colony algorithm sug-
gested a search function in the following form:

tr(i, ) pr(j)”
xi 2 or(i, j)yepr(i)
where j belongs to the set of all unvisited POIs, ¢r(i, j) is the trail
matrix and pr(j) is the profit function. The denominator normal-
izes the values into a proper probability score. Using the trail ma-
trix encourages traversing frequently used paths by previous ants
that are also close to the current node. The parameters a and b set
the preference for using trails versus exploring new nodes. In this
work, we incorporate the following into the PersCT framework:

Prob(i, j) = (7

e popularity and user interest objectives
e time-varying crowdedness information
e adistance re-weighting function

Our search probability function is defined as the following:

tr(i, j,0)pr(u, j,0) fais (i, )

Prob(i, j,t) = — , —
ZYV Z‘;V lr(l7.]>t)apr(u7]7t)bfdisl(lvj)

®)
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The search function is a product of three terms: (1) trail left by
past ants (2) computed profit score of unvisited POIs for this user
(3) distance re-weighting. The pheromone trail matrix ¢r(i, j,t)
stores the contributions from ants in the previous iterations. Since
we must consider the time-dependence of profit scores, the trail
contains a time dimension rather than a purely spatial formulation.

The profit function pr(u,i,t) takes into account (1) POI popu-
larity as defined in Equation 2, (2) user interest as defined in Sec-
tion 4.2, and (3) time varying crowdedness. We define a distance
re-weighting function fy;,, that re-weights the visiting probability
based on the distance to the current POI and the final destination.
Let i be the current POI, j the next POI to select from unvisited
POIs, and D the final destination, then the probability of visiting j
is re-weighted by a factor f;.:

1

fdisl(i7j) =

— 9
exp(dist (i, /) + D)) ®
The search function is re-weighted such that these POIs are pre-
ferred: (1) POIs that are close to the last visited POI, (2) POIs that
are closer to the final destination than the last visited POI. Rule 1
is based on the first law of geography, which states "everything is
related to everything else, but near things are more related than dis-
tant things" [17]. Rule 2 is based on the observation that people
tend to move towards the final destination and visit POIs on the
way rather than move away from it. Figure 3 shows a histogram of
the ratio ¢/U+1.D)
dist(i,D)
Section 5). Approximately 68% of the ratios are less than 1, and
the vast majority are less than 1.5, which supports the re-weighting
scheme. In Section 5, we show that distance re-weighting is effec-
tive in recommending trips.

4.4.2 Local Heuristic Search

We apply a local heuristic search when each iteration finishes
and all ants have reached their destination. The best ant is updated
and we generate a temporary ant to store the best ant. We randomly
swap all pairs of the visited POIs of the best ant. If a better solution
is found, then we update the temporary ant with current best ant.
Otherwise we undo the previous swap and re-start from the previ-
ous POI. Next we randomly swap an unvisited POI with one POI
in the trip. This scheme can increase the search space with little
computational cost and we can avoid being attracted to a certain
local optimum.

for a Flickr dataset in Melbourne, Australia (see

4.4.3 Trail Update Strategy

For both online and offline trail update steps, previous trails are
first "evaporated", or multiplied by a constant p € [0,1], to limit

influence by previous ants [4]. During each iteration, we implement
the online trail update rule as the following:

trail(i, j,t) = (1— p)rail(i, j,r) + % (10)
where W is the number of unvisited nodes in the POI graph.

After all ants have stopped, the global best ant is updated by
finding the ant with the maximum objective score (Equation 4),
and pheromone trails are also updated using the offline update rule
as in [4]:

trail(i, j,t) = (1 — p)trail (i, j,t) + p pr(bestAnt) (11)

where pr(bestAnt) is the profit score of the trip produced by best
ant (Equation 4).

4.5 Algorithmic Implementation

In this section, we describe the implementation details of the
PersCT algorithm, which consists of the follow three steps.

Step 1: Mapping POI visits. We extract user travel histories by
mapping geo-tagged photos to the list of POIs. In particular, we
map a photo to a POI if their coordinates differ by <200m based on
the Haversine formula [15], which is used for calculating spherical
(earth) distances. We calculate the popularity of POIs and the rat-
ing scores of a user to each of their visited POIs using user-based
collaborative filtering.

Step 2: Calculating crowdedness. Due to practical sensor place-
ment issues, foot traffic sensors might not be placed at the exact POI
locations. Therefore, we estimate the foot traffic volume at the lo-
cation of POIs using a nearest neighbour based estimation method.
Specifically, we find the three nearest sensors within 200m of a
POL and compute the mean pedestrian volume weighted by the in-
verse of their distances to the POI. As defined in Equation 3, we
calculate the crowdedness of the POIs at each time instance by di-
viding the current volume by the recorded maximum volume. For
each POI, the maximum pedestrian volume is found by scanning
through the data in the whole dataset to normalize between [0,1].
We then average the crowdedness of each POI using its weekly val-
ues at the same time. Although in this work we do not implement
a real-time system, our framework can be used when real-time data
are available.

Step 3: Recommending trips. We compute the travel time ma-
trix as in Equation 1. Using POI popularity, user interest, crowd-
edness, travel time, start time and maximum trip time as input pa-
rameters, the tours are generated by giving the current location and
the expected destination of the user to the PersCT algorithm (Al-
gorithms 2 and 3). Lines 3 to 12 in Algorithm 2 are the main loop
where the solution space is explored. In each iteration, all ants are
re-initialized with the given origin and destination. The set stopped
contains ants that either have reached their destination or exceeded
time limit (Line 4). If at least one ant has not stopped, then it enters
the inner while loop to search for the next POI to visit (line 8-10),
and Algorithm 3 is called.

Lines 2-5 of Algorithm 3 compute the visiting probability to all
unvisited POIs using Equation 8. Line 6 initializes a random float-
ing point number v in the range [0,1] and uses it to set a threshold
to determine the next POI to. Lines 8-10 compute the cumulative
probability score and when the sum is greater than v, to is set to
the index of the last value. Lines 11-20 update the objective func-
tion of the ant and also performs trail update using Equation 5 and
Equation 10. If the stopping criteria is met (lines 18 and 20), ant is
added to the list of stopped ants and will not search for another POI
in this iteration. The function SelectNextPoi then returns the ant.

Line 11 of Algorithm 2 updates the global best ant by finding
the maximum objective score. On line 12, offline trail update is



Algorithm 2: PersCT

Algorithm 3: SelectNextPoi

Data: O = origin, D = destination; 7 = time limit; Cost =
travel time matrix; Pop = popularity array; Int = user
interest array; Crd = crowdedness array; P = list of

POIs
Result: R = Best tour
1 begin
2 trail <— matrix of 1.0, bestAnt <— @
3 while iteration < maxiterations do
4 Initialize ants with < O,D >, stopped +— 0
5 while stopped # ants do
6 for ant € ants do
7 if ant ¢ stopped then
8 from <— last visited POI
9 depTime <— departure time at from
10 SelectNextPoi(ant);
1 Update bestAnt
12 Update trail with bestAnt (Equation 11)
13 while iteration < maxIterations do
14 Swap bestAnt.i with bestAnt. j
15 Update bestAnt.obj (Equation 4)
16 if bestAnt.obj < tempAnt.obj then
17 | Swap bestAnt.j with bestAnt.i
18 return bestAnt .tour

performed (Equation 11). Lines 13-17 perform the swapping local
search discussed in Section 4.4.2. Lastly, the trip by the best ant is
returned.

S. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of our
framework.

5.1 Datasets and Pre-processing

The evaluation was performed using datasets collected in Mel-
bourne, Australia (Table 1). A list of 242 POIs in Melbourne was
downloaded from [13]. User travel histories were extracted from
the Yahoo! Flickr Creative Commons 100M (YFCC100M) dataset
[16], which contains 100 million photos and videos taken by real
users. Visits within 200 meters of the POIs were kept and the
rest were removed. For each user, photos within eight hours were
grouped into a tour, producing a total of 3975 tours and 17087 vis-
its.

We extracted pedestrian foot traffic from the Melbourne Open
Data Portal [14]. Hourly pedestrian counts at 41 locations in the
CBD were captured. Four sensors were found to be frequently non-
operational and their data were removed. Missing entries were de-
tected and filled with counts from the previous hour. This accounts
for only 0.13% of the total data and does not affect the results.

We combined the Flickr trip data with pedestrian traffic data and
performed further filtering to keep trips within 200 meters of the
pedestrian sensors. This reduces the dataset to 2586 tours contain-
ing 9123 visits to 72 POIs. The pedestrian counts at the POIs were
estimated from the mean of the three nearest pedestrian sensors. It
should be noted that the counts were street foot traffic, which could
partially correlate with the actual number of visitors at the POIs.
Due to the challenge of obtaining exact POI visitor counts, we pro-
posed this alternative method of obtaining an estimated POI visitor

Data: ant; P = list of POIs; T = time limit

Result: ant

1 begin

2 prob <+—0

3 for p € Pdo

4 if p € unvisited then

5 | prob|p] +— Equation 8

6 v <— random € [0,1], s <— O

7 for pr € prob do

8 S <— s+ pr

9 if s > v then

10 | 10 <— index of prin prob

11 if to # ant.Destination then

12 Add to to ant .trip

13 ¢ <— cost of ant from Equation 1

14 if c < T then

15 Update ant.obj (Equation 4)

16 L Update trail with Equation 10
17 else
18 L ant.stopped «— TRUE
19 else
20 | ant.stopped +— TRUE
21 return ant

Flickr Photos
No. Users | No. Trips No. Visits
911 3975 17087
Pedestrian Foot Traffic Data
No. Sensors | Data Rate Period
41 1/hour 1/May/2015-30/Sep/2015
POI data: 242 POIs

Table 1: A summary of the datasets.

count. Nevertheless, an estimation of the street foot traffic can still
provide travellers with some degree of guidance to infer the actual
crowdedness of the venues. Furthermore, this system can be read-
ily deployed in venues where exact counts are available, such as
theme parks and museums.

We took a 50-50 split approach for training and testing, i.e. for
each user, the first 50% of the trips are used as the training set and
the remaining trips as the test set. For each POI, the visiting time
was set to 1 hour, as in related previous work [25]. Travel time
between two POIs were estimated using their Euclidean distance
and a walking speed of 4km/hour, which is also from the literature
[11]. Although more accurate travel time estimation models are
available, it is not the focus of our study and can be decoupled
from our problem.

5.2 Benchmark algorithms

Since our work is the first to consider the crowdedness criterion,
we could not find a benchmark algorithm that performs the same
task. Nevertheless, we implement six benchmarks that have been
reported in the literature [11][25].

Random (RD): This algorithm randomly selects an unvisited
POI as the next POI.



5-Nearest Neighbour (SNN): This algorithm finds the five near-
est unvisited POIs and chooses the most popular as the next POI.

10-Nearest Neighbour (10NN): This algorithm finds the ten near-
est unvisited POIs and chooses the most popular as the next POI.
The reason for two nearest neighbour algorithms is to investigate
the impact of search range.

Iterative Heuristic Approximation (IHA): This is an iterative
heuristic search algorithm proposed in [25] which was adapted to
our problem. In each iteration, a trip is found by inserting POIs be-
tween the origin and destination. The POI inserted must satisfy all
the constraints shown in Section 3.1. POIs are ranked and selec@gd
by computing the ratio of squared profit and cost: s(i, j) = IZ;‘:[’C((/I)) ,
where Prof = Pop (Equation 2) + Int (Section 4.2) and cost (i, j) is
the sum of travel time from POI i to j and stay time at j (Equation
1). After each iteration, the trip is recorded and after all iterations
have finished, the best trip is selected as the final output.

Greedy algorithm (GD): This algorithm selects the most popu-
lar unvisited POI as the next POI.

Integer Programming (IP): This is an integer programming
based optimisation algorithm proposed in [11] which finds the op-
timal solution of an orienteering problem. Since it could not solve
the time-dependent orienteering problem, only the popularity infor-
mation was used.

5.3 Variants of PersCT

In addition to the above benchmarks, we also evaluate four vari-
ants of the proposed PersCT algorithm.

Vanilla: This variant purely maximizes POI popularity without
considering crowdedness or personalization.

Crowdedness-aware (CR): This variant maximizes a combined
objective of POI popularity and crowdedness.

Personalized (CF): This variant uses the user-based collabora-
tive filtering to perform personalization and maximizes a combined
objective of POI popularity and user interest.

PersCT (CR+CF): This variant is the proposed algorithm that
combines CR and CF.

5.4 Evaluation Metrics

We assume a trip is planned before a user leaves the origin and
we evaluate the performance of the algorithms after the user reaches
the final destination. Each trip is evaluated independently and the
results of all trips are averaged together to produce the final results.
The following metrics are computed for each trip:

1. Precision (Pre): The proportion of true positives that are
also found in the recommended trip itinerary. If S, is the
set of POIs recommended, and S, is the set of POIs actually
visited, then precision Pre = S’SL’S“

2. Recall (Rec): The proportion of true positives that are also
found in the actual trip itinerary. If S, is the set of POIs
recommended, and S, is the set of POIs actually visited, then
recall Rec = w

3. F Score (F}): The harmonic mean of Pre and Rec: F =

2 PrexRec
Pre+Rec

4. Crowdedness (Crd): The mean crowdedness of the POIs at
the time of visit in the itinerary.

5. Popularity (Pop): The sum of the popularity of all POIs in
the itinerary.

6. User Interest (Int): The sum of user interest of all POIs in
the itinerary for a user.

Algorithm  Pre Rec F Crd Pop Int

RD 0.038 0.059 0.046 0.401 1.848 1.920
5NN 0.202 0.259 0.227 0480 4.134 2.683
10NN 0.194 0268 0.226 0.525 4.794 2.901
THA 0202 0294 0.239 0.508 4.588 3.446
GD 0220 0295 0.252 0.533 5.126 2985
PersCT  0.239 0.322 0.274 0485 4.368 3.111
IP N/A° NA NA NA NA NA

Table 2: Comparison of the proposed PersCT algorithm and
various benchmark algorithms.

Metrics 1-3 are selected to evaluate how accurately users are
modelled using PersCT vs baselines. Metrics 4-6 evaluate the capa-
bility of the algorithms to make the best trade-off between finding
interesting places for a user and avoiding the most crowded times.

5.5 Results and Discussion

5.5.1 PersCT vs Benchmarks

Table 2 shows a comparison of the PersCT algorithm versus the
benchmarks. Given the origin and destination of the trip, PersCT
was run 50 times with different random seeds and we report the
mean of all trips. The parameter settings are y=5, a =2, f =1,
p = 0.8 (for a parameter selection analysis see Section 5.5.5). For
each trip, we stopped the execution of an algorithm if the search
time was longer than 10 seconds due to real-life usability consid-
erations. As our problem is NP-hard, the integer programming al-
gorithm (IP) [11] failed to find a solution within 10 seconds for all
trips tested, and thus we excluded its results. It can be seen that
PersCT out-performs all other heuristic algorithms in precision, re-
call and F score. Interestingly, although GD performs the best in
popularity, and IHA wins in user interest, PersCT is the most ef-
fective algorithm in finding attractive trips for users. This could be
due to the difference in the search strategy. GD only selects the
most popular POIs and thus its search space is very limited. IHA
searches for POIs that give the highest scores per unit time spent,
and thus it also tends to select POIs close-by. In contrast, PersCT
explores a much larger solution space due to the use of the trail vari-
able to update trajectories for the ants. Additionally, the distance
re-weighting scheme implemented by PersCT also gives a boost
in performance, as we show in Section 5.5.2. For other bench-
marks, SNN and 10NN perform slightly worse than IHA, which
is expected since the search space is limited to the nearby POls.
Random performs the worst in <Pre, Rec, F1>, which is also not
surprising.

In terms of the crowdedness objective, the random method finds
the least crowded POIs with the lowest popularity. The second best
algorithm is SNN, and the third best is PersCT. Despite high accu-
racy in recommendation, PersCT still manages to find trips that are
less congested. The greedy algorithm finds trips with the highest
popularity, and interestingly they are also the most crowded. 10NN
and [HA perform better in crowdedness than Greedy but underper-
form PersCT in <Pre,Rec,F1>. These results indicate that crowd-
edness is highly correlated with popularity, and we found the Pear-
son Correlation score between popularity and crowdedness values
of Table 2 to be 0.982. This justifies an intuitive belief that more
popular places are more crowded, despite the fact that the data are
collected by two completely different systems (pedestrian sensors
vs user-uploaded photos). PersCT shows that the crowdedness of
trips can be reduced by avoiding visiting most popular locations at
their busiest times to maximize user satisfaction.
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Figure 4: A case study showing the trips planned using (a) PersCT, (b) Greedy method, (c¢) PersCT without crowdedness objective
(the CF only variant). Crowdedness of the trips: (a) 0.478, (b) 0.563, (c) 0.598.

Since PersCT is a stochastic algorithm while the benchmarks are
deterministic, we evaluated the statistical significance of the results.
Table 3 shows a summary of the distribution of F} scores generated
by 50 runs of the algorithm. It can be seen that none of the bench-
marks in Table 2 are within the 95% range of the sample mean.
Table 4 shows the P-values of the one-sample t-test by using the F}
scores of the benchmark algorithms with PersCT results. All values
are significantly less than 0.05, implying that the improvement in
Fj score of PersCT is statistically significant.

DF 95% LB Sample Mean 95% UB
49 0.269 0.274 0.281

Table 3: Distributional information of F; scores of the proposed
algorithm.

Greedy Random 5NN 10NN IHA
P-value 2.1e-10 2.2e-16 2.2e-16 22e-16 7.8e-13

Table 4: One sample t-test results of F; scores of the bench-
marks against the proposed PersCT method.

5.5.2  Variants of PersCT

Table 5 compares different variations of the PersCT algorithm.
Vanilla relies solely on popularity to generate itinerary recommen-
dations, and consequently the results are more similar to GD in Ta-
ble 2. However, Vanilla still out-performs GD by having a higher F}
score and less crowded trips. When the crowdedness information
is combined with Vanilla (the CR variant), less crowded locations
are found, despite lower precision and recall values. This is ex-
pected since popularity is highly correlated with the crowds. When
CF is used with Vanilla, the best precision and recall scores are ob-
served, consolidating our previous observation about personaliza-
tion. Meanwhile, trip crowdedness is also high for these itineraries,
suggesting that the POIs favoured by the users are also popular.
Combining crowdedness and personalization, a slight reduction in
user interest is observed. However, it is compensated by a large
reduction in the level of congestion at the POIs, which can be more
desirable for users.

Table 6 compares variants of PersCT that includes or excludes
the distance re-weighting term (Equation 9). A significant increase

Variant Pre Rec F Crd Pop Int
Vanilla  0.220 0.306 0.256 0.526 4.973 3.018
CR 0206 0.285 0.240 0.492 4.842 3.010
CF 0.241 0330 0.279 0.523 4.567 3.148
CR+CF 0239 0322 0274 0485 4368 3.111

Table 5: Comparison of variants of PersCT. Vanilla: No crowd-
edness or collaborative filtering. CR: only crowdedness. CF:
only collaborative filtering. CR+CF: both crowdedness and col-
laborative filtering.

Variant Pre Rec F Crd Pop Int
No fuzie 0209 0.284 0.241 0.480 4.391 3.131
With fz;; 0239  0.322 0.274 0.485 4368 3.111

Table 6: Comparison of variants of PersCT. No f;;,: does
not use distance re-weighting. With f;;: include distance re-
weighting.

in <Pre, Rec, F1> and a slight reduction in popularity and user in-
terest can been observed when the re-weighting scheme is applied.
This could suggest that for some trips, the most popular or interest-
ing POIs are far away from the user. However, real users tend to
prefer POIs that are close to the final destination or at least in the
same direction of travel. The results have shown the effectiveness
of PersCT and the importance of using geo-graphical information
in trip recommendation.

5.5.3 Case Study

We illustrate the effectiveness of the proposed PersCT algorithm
with a real life case study. In Figure 4, we compare three algo-
rithms, namely PersCT, greedy and the CF variant, to recommend
a trip for a user who starts at 9:00 and has a time limit of 7 hours.
The colors of the POIs indicate its crowdedness at the time of the
visit. The first observation is that most POIs are more crowded in
the afternoon than the morning, which is expected. It can be seen
that the PersCT algorithm plans the trip such that POIs that are
more crowded in the afternoon are visited in the morning instead
(POI 2 and 3, which is in a busy shopping region) and POIs less
sensitive to temporal foot traffic variations are scheduled in the af-
ternoon (Figure 4(a)). All POIs visited have a crowdedness value
of less than 0.8, which is acceptable to most users. For the Greedy
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method 4(b), since the most popular locations are selected first, the
distance travelled for the trip is far from optimized. Moreover, it is
not surprising that the crowdedness is high as a consequence of rec-
ommending popular POIs first. POI 7, which is very congested in
the afternoon, significantly increased the overall crowdedness and
it is avoided in the trip recommended by PersCT. A second exam-
ple, Figure 4(c) shows the resulting trip if only the collaborative
filter is used in PersCT. The crowdedness of the trip is even higher
than the greedy solution. This is also expected as the algorithm has
no information about the crowd profile at each POI.

5.5.4 Running Time

We implemented PersCT in Java7 and we performed the evalu-
ation on a 2.7GHz Macbook Pro with 8GB of RAM. We set the
number of iterations to be 20 as no significant improvement in per-
formance was observed for higher values. We compare the running
time of PersCT with various benchmarks in Figure 5. The running
time of all evaluated algorithms increase with the trip length, which
is expected due to the growth of the search space. As the time com-
plexity of the Ant Colony meta-heuristic is quadratic in the number
of nodes, PersCT is slower than the benchmarks. However, the
longest running time recorded was at trip length = 9 hours and it
is still less than one second in Java without any code optimisation.
Given the improvements of PersCT over the benchmarks in terms
of Pre, Rec, F1 and Int, we consider that the small trade-off in run-
ning time is negligible. Moreover, this running time is sufficient for
most real-life applications.

5.5.5 Parameter Selection

We performed a grid search for the two important parameters,
o and fB, of the PersCT algorithm (see Section 4). The results are
shown in Figure 6(a). Each experiment was ran 10 times and the
results were averaged. The best performance was observed at o0 =2
and B = 1. We also evaluated the impact of changing 7y, which
determines the balance between maximizing the profit function and
minimizing crowdedness. A high y will instruct PersCT to search
for POIs with higher popularity and user interest level, whereas a
lower value will results in less congested venues to be selected. As
can be observed in Figure 6(b), the highest F score can be achieved
when ¥ was set to 5.0.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated the personalized crowd-aware trip
recommendation problem based on the Orienteering Problem and
modelled our problem as a multi-objective time-dependent OP with
time-dependent objectives. Given user travel histories and foot traf-
fic information collected by sensors, we proposed the PersCT algo-
rithm, which extends the Ant Colony Optimisation meta-heuristic
and extracts POI popularity, user interest and crowdedness infor-
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Figure 6: Performance of the PersCT algorithms with varying
parameter settings. (a) Changing o and f3. (b) Changing 7.

mation to recommend low congestion trips that also suit the users.
We evaluated PersCT using real life datasets from Flickr geo-tagged
photos and 6 months of pedestrian traffic data in Melbourne, and we
showed that the proposed PersCT algorithm out-performs a num-
ber of benchmark algorithms in precision, recall, F] score, as well
as achieving a good balance in crowdedness.

We acknowledge the following limitations of this study and pro-
pose some directions for future work. (1) Due to data availabil-
ity issues, we were unable to obtain pedestrian count datasets in
other cities to further evaluate our algorithm. A potential alterna-
tive option is to use pedestrian simulation models and evaluate ac-
cordingly. However, some calibration data are still needed in many
simulation models. Obtaining a reliable pedestrian model could be
the next step. Other data sources such as mobile phone logs could
also be explored. (2) We have assumed that the number of users of
this system is a small fraction of the overall population and does
not affect the pedestrian distribution. In real-life situations where a
POI has limited availability, this might not be true. A load balanc-
ing scheme may be the next step in this direction.
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