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Abstract—Identifying events happening in a specific locality is
important as an early warning for accidents, protests, elections
or breaking news. However, this location-specific event detection
is challenging as the locations and types of events are not known
beforehand. To address this problem, we propose an online spatio-
temporal event detection system using social media that is able
to detect events at different time and space resolutions. First,
we exploit a quad-tree method to split the geographical space
into multiscale regions based on the density of social media data.
Then, we implement a statistical unsupervised approach using
Poisson distribution and a smoothing method for highlighting
regions with unexpected density of social posts. Further, event
duration is estimated by merging events happening in the same
region at consecutive time intervals. A post processing stage is
introduced to filter out events that are spam, fake or wrong.
Finally, we incorporate simple semantics by using social media
entities to assess the integrity, and accuracy of detected events.
The proposed method is evaluated using Twitter and Flickr for
the city of Melbourne based on recall and precision measures.
We also propose a new quality measure named strength index,
which automatically measures how accurate the reported event
is.

Index Terms—Online Event Detection; Social Media; Quad-tree;
Poisson Distribution, Twitter, Flickr

I. INTRODUCTION

Social media services, such as Twitter, are frequently used
as a source of news and other information. Social media
serves as an efficient source of breaking news compared to
traditional media, which are either slow to pick up such
information or do not give a complete and accurate picture of
the news and events. Due to these reasons, many researchers
and organizations are relying on social media for obtaining
timely news. One emerging use case of significant importance
is where social media information is used for real-time event
detection. For example, governments and organizations may
be interested in events that are occurring in a particular
geographical area, such as detecting a bush fire near resi-
dential areas, traffic congestion and accidents on highways,
protests and other security incidents in the city. Being able to
promptly detect such events is important as this early detection
allows the relevant authorities and organizations to make the

necessary responses to address these potentially adversarial
events.

The traditional approach to detect events in social streams is
to track the aggregate trend changes based on the count of
geotagged social media data at given location and time. This
approach is very closely related to topic detection and tracking,
where an event is conventionally represented by a number
of keywords, topics or tweets showing bursts in appearance
count, i.e. keywords that are mentioned significantly more
often during a (not too short) time period than in the period
preceding it [1], [2]. Most of these existing approaches detect
events at fixed spatial and temporal resolutions, e.g., grids,
which do not adequately capture the dynamic changes in
tweeting volume across different areas and time [3]. However,
real-life events can occur at any spatial or temporal resolution,
which is not known a priori and, therefore, algorithms that
have fixed resolution result in suboptimal performance. While
there are some approaches that are designed for detecting
events at multiscale spatio-temporal resolutions [4]–[6], they
are essentially batch-based algorithms which are not directly
applicable in the online real-time event detection scenarios.
While there are a few online spatial event detection algorithms
proposed in the literature [7]–[9], they are fixed in terms of
spatial and temporal resolution. Many of these works also
utilized a supervised approach to event detection which may
not work well for new types of events.

Research Objectives and Contributions. Our aim is to
detect spatio-temporal events from social media. It could be
any event which is being discussed loudly (frequently) in a
specific local or global area. The first challenge associated
with event detection is that there is no consensus among
researchers on the definition of an event. The second challenge
is that the location, time and the scale of the events (both in
time and space) are not known before hand. Finally, we are
interested in detecting events in real-time from high velocity
data streams and therefore, algorithms need to be single pass
and computationally efficient.

We propose a novel approach to online spatio-temporal event
detection that utilizes: (i) a quad-tree and Poisson model
variant to dynamically identify events across different spa-
tial scales; and (ii) a smoothing and filtering approach to978-1-7281-0858-2/19/$31.00 c© 2019 IEEE



effectively detect events with different temporal resolutions.
The contribution of this paper can be summarized as fol-
lows:

• leveraging the quad-tree data structure for multiscale
event detection;

• combining a Poisson model with a smoothing function
for unsupervised event detection;

• a new event validation measure, strength index (SI),
which automatically assesses the accuracy of the detected
events by using social media entities; and

• evaluation of the proposed method using different social
media datasets: Twitter and Flickr.

Structure and Organization. This paper is structured as
follows. Section II reviews related work in the area of event
detection, while Section III introduces the formulation of the
event detection problem. Section IV describes our proposed
algorithm for location-based event detection, and Section VI
shows the experimental results of our proposed algorithm
against various baselines. Finally, Section VII summarizes and
concludes this paper.

II. RELATED WORK

Many approaches have been developed for event detection
in the spatial, textual (i.e. semantic) and temporal context,
separately [3], [10]. But only few attempts are reported which
combine spatio-temporal information for event detection. In
[11], spatio-temporal events are detected by clustering the
geotagged tweets, followed by topic modelling using the
summarized words in each estimated cluster. Similarly, [12]
adopted an approach of identifying topics associated with
specific locations by applying Latent Dirichlet allocation on
tweets posted in the same locality. Others like [13] combine
clustering techniques with embeddings of tweet location, time,
and text for event detection. The fact that not all of the tweets
are geotagged restricts the accuracy of spatial-based event
detection approaches. Although Twitter enables users to post
tweets with their current locations (longitude and latitude),
only an average rate of 0.85–3% tweets being geotagged per
day, around 7,000,000 geotagged tweets are posted per day
[14].

Another major challenge is the method of partitioning the
geographical area. In this regard, using a uniform-grid, which
applies an equi-width grid of a certain size over the data
domain does not solve the problem for various reasons. First,
a good method for choosing the grid size is required, which
has not been accurately covered in the literature [15]. Second,
fixed grid cells might not help in finding both local and global
events. For example, using a low resolution grid for spatial
data might capture only the global events occurring on the
state or the country level, while a high resolution grid will
detect the events on smaller scales (local events), i.e. within the
community or the city where the grid cell ranges from 1km-
50km. Another solution is to manually select a set of points
of interests (POIs), where each POI is a fixed size grid cell.

TABLE I
HIGH LEVEL NOTATION

px A social media post px

tx Timestamp of post px

lx Location of post px

fx Features of post px

S A data stream of posts as a set, S = {p1, p2, . . . , pn}
W A window (e.g. of size m),W = {pn−m+1, . . . , pn} ⊂ S

E A set of posts E ⊆ W that represents a spatio-temporal
event

Following this approach, we can control the number of POIs
based on tweets distribution density. For instance, areas in city
centre might have many POIs with small grid cells, while areas
far from the city might have few POIs with large grid size.
But, having fixed POIs limits the location of detected events to
the chosen POIs only. In addition, the manually selected POIs
has to be done for each geographical area of analysis.

There are also many related work that study the general
problem of event detection using social media, without an
explicit focus on the spatial aspect of events. For example,
numerous researchers have examined the problem of iden-
tifying trending and bursty events [16]–[18], and detecting
controversial events [19], [20]. Weng and Lee [21] utilize
(tweet) word signals derived from wavelet analysis, which are
clustered together using a modularity-based graph partitioning
to represent detected events. However, many of these works
aim to detect events without considering the spatial aspects
of these events. Others like Sakaki et al. [22], [23] first use
a trained Support Vector Machine to determine if tweets are
earthquake-related or not, then applies Kalman filtering and
particle filtering on tweets to estimate the centres of detected
earthquakes. Similarly, there are also various web and mobile
applications for tracking general events or retrieving tweets
related to specific events [24]–[26]. For a more detailed survey
on general event detection, we refer readers to [27].

III. PROBLEM STATEMENT

In this section, we first introduce some basic notation and
definitions used in our work, before formally defining the
problem of spatio-temporal event detection.

A. Preliminaries

Table I summarizes the key notations used in our work, which
we elaborate next.

Definition 1 (Social Media Post): We represent each social
media post as p = 〈t, l, f〉, where each social media post p is
associated with a timestamp t, location l and features f . The
timestamp t and location l are straightforward representations
of date/time and latitude/longitude coordinates, while features
f can represent multiple aspects of different types of social
media, e.g., text in a tweet, user tags for a photo, etc.



Definition 2 (Data Stream): Building upon Definition 1
(Social Media Post), we now have multiple social media posts
arriving in a real-time data stream. Let S = {p1, p2, . . . , pn}
denote the first n posts from the data stream, order temporally
such that for pi and pj where i < j, ti ≤ tj .

Definition 3 (Current/Query Window): In the context of a
Data Stream S = {p1, p2, . . . , pn}, we define a current/query
window W = {pn−m+1, . . . , pn−1, pn}, where W ⊆ S.
This current/query window represents the current set of social
media posts from post pn−m+1 to post pn. For generalizability,
the window size can be based on either a fixed number of
posts, m > 0, or a fixed duration between posts pn−m+1 and
post pn, i.e. tn − tn−m+1.

B. Formal Problem Definition

The focus of our work is to develop an algorithm for detecting
spatio-temporal events from streaming social media, based
on a provided set of current social media posts, i.e., the
query/current window. We define a spatio-temporal event as a
set of social media posts that represents an increase in activity
across a period of time within the same locality, based on the
current/query window.

Given a data stream of social media posts
S = {p1, p2, . . . , pn} and a query window
W = {pn−m+1, pn−m+2, . . . , pn} that represents currently
observed social media posts, we want to identify a set of
posts E ∈ W with the following goals:

• Spatial Proximity, e.g.
∑
px∈E

∑
py∈E

dist(lx, ly) should be

significantly smaller than that for the same number of
posts drawn uniformly at random from W .

• Temporal Proximity, e.g.
∑

px,py∈E
(ty−tx) (for consecutive

px and py), should be significantly smaller than that for
the same number of posts drawn uniformly at random
from W .

• Significance, |E| should be as large as possible while
maintaining Spatial and Temporal Proximity goals.

In short, we are selecting a subset of social media posts that
are representative of a spatio-temporal event, based on their
spatial and temporal proximity.

IV. PROPOSED ALGORITHM

In our work we address spatial proximity by considering
windows that are defined in terms of a region, and we address
temporal proximity by considering a sliding window and
assessing the change in the number of posts in a given region
for two consecutive windows. Formally we consider a number
of sliding windows,Wi(Γj), identified by an unbounded slide
sequence number i = 1, 2, . . . and finite set of regions Γj ,
j = 1, 2, . . . , γ, where

⋃
Γj = Γ. All of our sliding windows

have a time duration of T and slide increment ∆T , with the

head of the window being Ti, i.e. every sliding window i
covers time interval [Ti−T, Ti). In this way, we define

Wi(Γj) =Wij = {px | Ti − T ≤ tx < Ti, lx ∈ Γj , px ∈ S} .
(1)

Each region serves as a spatial proximity bound for the posts
that it contains, in the sense that we can consider the posts
being within a given region as satisfying the spatial proximity
goal from the problem definition. There are many ways that
regions can be selected, e.g. they could be a uniform mesh
based partition of the space, or each region could be associated
with a point of interest (POI) in the space (e.g. a region around
a park or building), etc. In our work we consider a multi-scale
region selection approach based on a quad-tree division of
space; in this case regions are overlapping with some regions
subsuming others. In previous work we have also considered
the POI region selection approach and we make comparisions
between them in this paper.

In order to assess the change in the number of posts from
one window to the next, we assume that the number of posts
arriving in a given time interval has a Poisson distribution,
and we thereby assign an estimate ∆T -arrival rate of posts
for each region based on its sliding window:

λij =
|Wij |∆T

T
, (2)

where |x| is the cardinality of set x. Finally, as the basis
for event detection in each region, for each window Wij , we
consider the observed number of posts in the slide increment
interval [Ti, Ti + ∆T ),

Cij =
∣∣∣{px | Ti ≤ tx < Ti + ∆T, lx ∈ Γj , px ∈ S

}∣∣∣,
and make use of the Poisson p.m.f.:

P
[
Cij ;λij

]
= Pij = eλij

λCij

Cij !
. (3)

If Pij is significantly low (below a threshold) then we consider
the possibility that region j has exhibited an event and we
consider the posts within the slide increment to potentially
be comprising that event. The details of our approach, called
Spatio-temporal Online Event Detection Algorithm, includes
more aspects that are explained next: (1) building a multiscale
spatial resolution grid using the quad-tree method, (2) event
detection using the Poisson model and signal smoothing, (3)
event merging and (4) event pruning. Generally, our algorithm
maintains an unbounded set of detected events E found in
the unbounded stream S. A detailed explanation for each
phase is provided in the following subsections. As well,
Table II provides an overview of the notation used in the
algorithm.

A. Phase 1: Build Quad-tree

In this phase, we use the quad-tree method for spatial decom-
position [28], [29]. It has been used in a variety of applications
including image processing, computer graphics, geographic
information systems and robotics [30], [31]. We construct



TABLE II
ADDITIONAL NOTATION

Γj region j where Γ =
⋃

Γj contains all posts in S

Wij
the set of posts in the sliding window at interval i for
region j

Cij
number of posts in the window slide increment interval i
for region j

λij estimate rate of posts at interval i for region j

Pij Poisson signal at interval i for region j

τ1 Poisson signal threshold

Fij event signal at interval i for region j

τ2 event detection threshold

α event signal decay parameter

θduration event duration threshold

θentity minimum entities threshold

θarea quad-tree node region area threshold

θcount quad-tree node post count threshold

a quad-tree at each time interval i. The quad-tree in two
dimensional space starts with a large rectangular region, in
our work Γ1 = Γ, which represents the root of the quad-tree.
The root region Γ1 is subdivided into four equal sized regions
{Γ11,Γ12,Γ13,Γ14} and each subregion is recursively subdi-
vided, i.e. creating {Γ111,Γ112, . . . }, and so on. Subdivision
of a region x only occurs if both |Wix| > θcount posts and the
area of region x is at least θarea. These constraints limit the
minimum spatial resolution. As the quad-tree is constructed
we also compute λij and Cij for each node, including internal
nodes; here node is synonomous with region in that region j
is node j.

B. Phase 2: Event Detection

For a sliding window interval i and all regions j (including
those at internal nodes of the quad-tree), we use the Poisson
distribution [32]–[34] to measure how likely the observed
number of posts, Cij , is for the slide increment ∆T that
immediately follows the sliding window. The estimate arrival
rate of posts is computed as in Eq. 2 and the probability, Pij ,
of observing Cij posts in time ∆T is computed as in Eq. 3.
The more unlikely the observation, which may result from a
significantly large increase or decrease in posts from the mean,
the more we consider the posts (or lack thereof) to comprise an
event. Therefore regions with Pij < τ1, a constant threshold,
could be flagged as potential regions for events. To compensate
for sparse and/or incomplete data, where the stream of posts
may not have a significantly strong representation of social
media posts, we “smooth” the Poisson signal by computing

an exponential decaying average event signal, Fij :

δij =

{
τ1−Pij

τ1
, if Pij < τ1

0, otherwise

Fij = αFi−1,j + (1− α)δij

(4)

where δij is the scaled Poisson signal, Fij and Fi−1,j are
the event signal values for node (region) j at the i and i− 1
intervals respectively, and 0 ≤ α ≤ 1 is a constant decay
parameter. Finally, if Fij ≥ τ2, an event detection threshold,
we flag the posts, or more specifically the interval and region,
as comprising an event.

C. Phase 3: Merge Events

Each event found in the previous Event Detection phase has
a different spatial resolution and a fixed temporal scale (∆T ).
In this phase, we construct events with multiscale temporal
resolution using a merging method. Events at the same region
that occurr at consecutive time intervals are merged. This gives
an estimate for the period of time during in which an event is
highlighted rather than assuming a predefined fixed duration
(∆T ). For instance, if two events e1 and e2 occur in the same
region at time intervals i and i+ 1 in order, then both events
are combined to one event with period of 2∆T . When merging
we combine the posts and average the signal strength for the
merged event.

D. Phase 4: Prune Events

To further increase the precision of our event detection and
to handle spatio-temporal events that occur over a changing
resolution we prune events after merging them. First, we only
select events with duration ≥ θduration to be included in the
final set of detected events. The idea is that the longer the
event duration, the more reliable and accurate it is. In other
words, regions/nodes which are flagged for short periods are
most likely to be noise (i.e. false positives). Second, the fact
that we compute the signal for all quad-tree nodes (i.e. both
internal and leaf nodes), leads to the propagation of some
flagged events over the different tree levels (i.e. multi spatial
resolution). So if an event is detected at the same time on
different tree levels, we only keep the node with the strongest
signal. In other words, if overlapping tree nodes (i.e. parent,
child, grand child, and so on) are flagged as events from
time t1 to t2, then we select the node (i.e. region) with the
strongest signal to be the spatial resolution of the final detected
event. This gives us a set of unique events which happened at
different spatial and temporal resolutions. Third, we utilize the
entities in the social media posts to detect and eliminate spam
or fake events. We extract the set of unique entities (which
may be keywords, mentions, hashtags, etc., depending on the
type of social media post) across the posts in the event. If
the size of the set is less than θentity then we remove the
event.



V. EXPERIMENTAL DESIGN

In this section, we describe our datasets and give an overview
of the evaluation metrics and baseline algorithm used in our
experimental methodology.

A. Dataset and Data Collection

To demonstrate the generalizability of our proposed algorithm,
we perform our experimental evaluation on two datasets based
on Twitter and Flickr. For our Twitter dataset, we performed
a two-stage collection of tweets, similar to [35], [36]. We first
used the Twitter REST API to retrieve all geo-tagged tweets
posted by users in Melbourne in 2017. As we focus on geo-
tagged tweets, this collection process resulted in 203519 geo-
tagged tweets by 22264 different users. For our Flickr dataset,
we focused on geo-tagged photos posted in Melbourne, based
on the Yahoo! Flickr 100M Creative Commons (YFCC100M)
dataset [37], [38]. The YFCC100M dataset comprises 100M
geo-tagged photos and videos along with their meta-data such
as latitude/longitude coordinates, date/time taken, photo name,
user description, assigned tags, etc.

B. Evaluation Methodology

1) Precision: We use precision to measure the ratio of cor-
rectly detected events (true positives) to the total detected
events. The absence of the ground truth makes the task of
computing precision very difficult. As it is impractical to
manually label the overly large number of events in the dataset,
we propose a semi-automated assessment methodology using
Google search results where each event is assigned 1 if it is
true event, 0 otherwise. To do so, we first query Google using
the top k entities as well as the date-time of each detected
event. We use Google query results to decide whether an
event is True or False, 1 and 0 refer to true and false event,
respectively. If we don’t get any useful information about the
event from Google, then we manually look at the posts of the
event to decide if it is a personal/private event, spam or wrong
event.
2) Recall: Recall reflects the ability of the model to find
all actual events within a dataset. In the context of event
detection, recall measures the percentage of detected events
with respect to important events/news appearing on a real-
world news headlines. Similar to precision, we do a manual
assessment for recall due to the absence of ground truth events.
This is done by using Google search engine to select the most
common events appearing on the news headlines for the days
corresponding to the analysis. This includes festivals, public
holiday events and international performances occur in the
area of analysis. Each event is represented by a list of entities,
which are used to manually decide whether an event is detected
by our method or not.
3) Strength Index (SI): To examine if the posts assigned to
an event e = (region, start, end, period, posts, signal) are
relevant or not, we introduce a metric, which we refer to as the
event strength index (SI). SI is the fraction of the retrieved
top entities to the total count of event posts. We use SI as
an indicator of how important/precise a reported event is. For

an event e with total number of posts C = |posts| and χi
being the i-th most frequent entity (could be hashtags and
mentions for twitter or image tags and description for Flickr),
we calculate SI using the following formula:

Strength Index (SI) =

∑k
i=1 Cχi

C
, (5)

for constant k > 0, where Cχi
is the number of posts that

contain χi. SI ranges from 0 to k, where k is the number of
top entities. We obtain a small value for SI (� 1), when the
top entities do not match the context of the detected event or
if they are relevant but with a small number of occurrences.
For example, a value of 0 for SI means that all posts for an
event e are irrelevant, while a value of k means that all event
posts contain at least one occurrence of each top entity.

C. Baseline Algorithm

To show the effectiveness of the proposed method, we compare
it with a baseline algorithm that uses Points of Interests
(POIs). POIs have been frequently used in location-based
recommendation [39]–[41] and we develop a baseline using
the similar idea of tagging geo-tagged social media to POIs.
Similar to earlier works, we obtain a list of known and popular
POIs for each city from their respective Wikipedia entries.
In this baseline algorithm, we utilize a spatial representation
of tweets based on their proximity (<100m) to known POIs,
instead of assigning tweets to dynamically-sized grids based
on quad trees. The remaining steps of computing Poisson
signals and determining event duration remain the same as
previously described in Section IV.
1) Incremental Clustering for Real-time Event Detection:
Among the existing event detection techniques and algorithms
discussed in Section II, we select the event detection approach
proposed in [7] for comparison with our approach. The reason
is that it is very closely related to our introduced problem. The
approach detects significant clusters that are sufficiently dense
and large, in streams of spatial events with the advantage of
tracking cluster evolution over time.

Given a list of active data points (i.e. spatial events) that
occurred in the interval [tc −∆T, tc], where tc is the current
time and ∆T is a maximal temporal gap, the algorithm finds
the set of significant clusters by repeatedly extracting a set
of event circles and unions every time tick (t). An event
circle C is a group of active events that fits in a circle with
maximal radius R. While a union is a set of event circles that
have at least k-overlapped events (i.e. k-connecting events).
Finally, a significant event cluster is a union that includes at
least N spatial events, i.e. minimal cluster size. The values
for parameters t, ∆T , R, K, and N are user-specified. More
details about the algorithm can be found in [7].

We implemented the full algorithm in Python and experi-
mented using the geotagged tweets dataset for Melbourne in
2017.



TABLE III
PARAMETERS USED IN THE PROPOSED METHOD

Method Parameter = Value

Quad-tree
θcount= 20

θarea = 0.001 sqkm

Poisson model

T = 3 days

∆T = 10 minutes

signal threshold τ1 =0.01

event detection threshold τ2 =0.4

event signal decay coefficient α = 0.5

Event filtering duration threshold θduration= 50 minutes

minimum top entities θentity = 2

VI. RESULTS

In this section, we evaluate the proposed method in four
different aspects. Firstly, we present a preliminary analysis
of the proposed method (Section VI-A). Secondly, we present
a detailed comparative analysis with the baseline algorithm
(Section VI-D1). Thirdly, using the tweets over a period of
one-year we evaluate our algorithm based on the precision,
recall and strength index as statistical metrics (VI-B). Finally,
we show a case study of event detection using Flickr image
dataset (Section VI-C).

A. Preliminary Analysis

In this section, we used a subset of the collected tweets
to evaluate the individual phases of the proposed method.
We extracted January-2017 Melbourne tweets which contains
23327 geotagged tweets for 5427 users. First, quad-tree is used
to construct multiscale spatial grid. Then, events are detected
using Poisson model. Following this, a smoothing function is
applied for accurate estimation of event duration. Finally, a
false positives removal phase is performed to eliminate both
falsely highlighted events and spam events. Table III presents
the different parameters used in the proposed method. The
parameters are chosen after several experiments, to achieve
the best performance.

B. Case Study: Twitter Dataset

To evaluate the performance and reliability of the proposed
method, we experiment the whole dataset for Melbourne in
2017. Figure 1 visualises some of the detected events on the
map. Each event has the start and end time, total tweets,
area and the top 5 hashtags/mentions. We use the top hash-
tags/mentions along with the event time to manually evaluate
the correctness of the event. Table IV, column ”Twitter” shows
the total number of flagged events after each phase of the
proposed method. In total, we detect 137 events after the
removal of all false positives.
1) Precision and Strength Index Results: We select a random
45 events as the evaluation set. Table V reports the manual

TABLE IV
EVENT DETECTION RESULTS FOR FLICKR AND TWITTER

Case Study Twitter Flickr

Month-Year 2017 Jan-2013

Number of users 22264 90

Number of posts: 203519 995

Total 10-min intervals & nodes 15253260 230468

Total flagged nodes 29520 726

Merging adjacent nodes 25108 165

Duration filtering 299 19

Filtering propagated events 158 7

Filtering spam events 137 7

evaluation results for sample selected events from the evalua-
tion set. For each event, the algorithm results the event start
and end date-time, area/region in sqkm, tweets count, top 5
hashtags/mentions with its occurrences. In total, 40 out of 45
are correct events according to the manual evaluation, with a
precision measure of 89%. False positives are highlighted in
red in Table V. The table shows that both local and global
events are detected using the proposed method (see the ”area”
column in Table V).

SI index is also reported for all events (see column ”SI” in
Table V). We obtain SI with an average of 1.2 across the
evaluation set. This is an indication that all tweets for an event
contain at least one of the relevant hashtags/mentions, which
confirms the accurate results of the proposed method.
2) Recall and Strength Index Results: We select 15 events
to assess the recall with a total of 10 correctly detected events
according to the manual evaluation, with a recall measure of
66.7% and average SI of 1.034. The reduction in recall is ex-
plainable since the social media does not contain information
about all actual events. This causes a certain increase in the
false negatives. Table VI reports the date-time, top 5 entities,
tweets count, event area and SI for sample selected events
from the evaluation set. In the table, the false negatives are
highlighted in blue.

C. Case Study: Flickr Dataset

In this section we present our second case study for event
detection using the Flickr dataset introduced in Section V-A.
The dataset was further reduced by keeping only geotagged
images for January-2013 for Melbourne. The chosen years
have largest number of photos taken in January. We evalu-
ated the proposed event detection method using the set of
images collected for each city. In our experiments, instead
of extracting top k hashtags/mentions as in the twitter case
study, we use the title, userTags and description attributes for
each image to extract the most frequent entities of an event.
Table IV, column ”Flickr” reports the results each individual



Start: 01-28 09:40 End: 01-28 10:40 Start: 02-27 00:00 End: 02-27 01:00 Start: 03-10 13:50 End: 03-10 14:40 Start: 04-23 06:00 End: 04-23 06:50
Tweets count: 35 Area (sqkm): 0.44 Tweets count: 17 Area (sqkm): 0.028 Tweets count: 13 Area (sqkm): 0.002 Tweets count: 10 Area (sqkm): 0.028
Top 5: #nickcave: 17.1% Top 5: #greekandthecity:

82.4%
Top 5: #purposetour: 46.2% Top 5: #tvweeklogies: 50 %

#australianopen:
11.4%

@serenawilliams:
8.6%

#lovelonsdale: 76.5% #kkfuntimes: 76.5% #justinbieber: 30.8% #melbourne: 23.1% #redcarpet: 20% @nazeem: 10%

#sidneymyermusicbowl:
8.6%

@australianopen:
8.6%
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15.4%
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10%

Fig. 1. Sample detected events using Twitter Data in Melbourne, 2017

TABLE V
PRECISION RESULTS: MELBOURNE DETECTED EVENTS IN 2017 USING GEOTAGGED TWEETS (DUE TO SPACE CONSTRAINTS, 5 EVENTS ARE SHOWN)

Detected Events Results Manual Assessment

ID Date & Time Top 5 hashtags/mentions: # of tweets Count Area SI True? Event Description

5 -S 01-28 09:40-E 01-28 10:40 #nickcave: 6, #australianopen: 4, #23: 4, @serenaw-
illiams: 3, @australianopen: 3

35 0.44 0.57 1 Serena Williams wins Australian Open final (Tennis)

9 -S 02-27 00:10-E 02-27 01:00 #greekandthecity: 13, #lovelonsdale: 13, #kkfuntimes:
13, #kkrockchic: 11, #mc: 3

18 0.44 2.94 1 Thousands turn out to celebrate Lonsdale St Festival’s
30th anniversary

12 -S 03-18 06:50-E 03-18 07:40 #adele: 10, #melbourne: 4, #etihadstadium: 3,
#adele2017: 2, #benandjase: 1

14 0.44 1.43 1 Adele adds new Melbourne show to 2017 Australian
tour

22 -S 04-05 10:00-E 04-05 12:20 #worlds50best: 41, @theworlds50best: 28, @australia:
14, #seeaustralia: 11, #restaurantaustralia: 10

94 0.03 1.11 1 The 2017 awards ceremony for the World’s 50 Best
Restaurants 2017

26 -S 04-25 04:00-E 04-25 05:40 #anzacday: 15, #lestweforget: 8, @mcg: 8, #mcg: 6,
#afldonspies: 5

44 0.01 0.95 1
* Melbourne Cricket Ground: AFL -round 5 - Es-
sendon VS Collingwood. * ANZAC Day public holi-
day

phase of the proposed method using Flick Dataset for each
city.

D. Comparative Analysis of Baseline Algorithms

1) POI-based Event Detection: We use January-2017 Mel-
bourne geotagged tweets dataset to run this experiment. We
selected 242 POIs (100m x 100m) in Melbourne where most of
events occur. We apply the proposed event detection algorithm
on the POIs instead of the the multiscale grid generated by
quad-tree method. Every ∆T (i.e. 10-min), we flag all POIs
with smoothed signal less than the threshold (τ2).

Table VII reports the details of the detected events on
28/01/2017 using each of the proposed and baseline methods.
The results show that our approach is able to detect all events
as identified by the baseline method, along with additional
events with different spatial scales that the baseline method
was unable to detect. Also, the conducted experiments show
that POI based method detects events with shorter duration
than the quad-tree based method. The reason is that POI grid
cells are is small (100m x 100m).
2) Incremental Clustering for Event Detection: We run the
algorithm using the following parameters: time tick t = 10-
min, R = 0.25km, ∆T = 3hrs, K = 2, and N = 5. The

values of the first two parameters are chosen to be close to
the values used in our approach for fair comparison. While the
values of the other parameters are chosen to be the same as
the one used in the paper [7]. For each time tick, i.e. 10min,
we record the set of significant unions (i.e. clusters). In total,
we obtained 154546 significant events in Melbourne 2017. To
avoid detecting same event more than once, we group the set of
detected events by their union ID. Then we keep only the event
with the highest number of tweets for each union ID. This
grouping strategy decreased the total number of significant
events to 3994, since it removes all redundant events.

For quantitative comparison with our approach, we compute
precision and recall for the implemented algorithm. For pre-
cision, we select a random 20 events as the evaluation set.
For each event, we calculate the the event start and end
date-time by using date-time of all tweets assigned to each
cluster. We also report area/region in sqkm, tweets count, top
5 hashtags/mentions with its occurrences, description and SI
index for all events. In total, 9 out of 20 are correct events
according to the manual evaluation, with a precision measure
of 45%. It is clear that the precision is very low compared
to our results. The reason is that using small values for k
and N resulted in large number of detected events, where the



TABLE VI
RECALL RESULTS: MELBOURNE COMMON EVENTS OCCURRED IN 2017

# Event Description Date-time Entity: occurrences * Area SI

1 The Night Market; Wed 6-9pm -S 01-18 10:10 -E 01-18 11:00 #melbourne: 3, #queenvictoriamarket: 2, #glutenfree: 1, #nofil-
ter: 2, @hunde: 1

35 28.181 0.258

2 Moomba Festival; 10-13 Mar -S 03-12 01:30 -E 03-12 01:50 #melbourne: 4, #davidhockney: 1, #shrineofremembrancemel-
bourne: 1, #ladiesinblack: 1, @moombafestival: 1

16 7.04 0.498

5 Patti Smith performs; Apr 16 -S 04-16 13:20 -E 04-16 14:00 #music: 4, #livemusic: 4, #melbourne: 4, #horses: 3, #patti-
smith: 3

8 0.028 2.25

6 Australia Day; Jan 26 -S 01-26 05:40 -E 01-26 06:10 #art: 6, @ngv: 5, #ipad: 5, @australianopen: 5, #inspiration:
5

20 1.76 1.3

7 Labour Day; Mar 13 Not Detected

9 Easter Sunday; Apr 16 -S 04-17 04:00 -E 04-17 04:20 #brunch: 1, #eastersunday: 1 4 7.04 0.5

10 ANZAC Day; Apr 25 -S 04-25 04:00 -E 04-25 05:40 #anzacday: 15, #lestweforget: 8, @mcg: 8, #mcg: 6, #afldon-
spies: 5

44 0.007 0.96

11 Queen’s Birthday; Jun 12 Not Detected

13 Melbourne Cup; Nov 7 -S 11-07 06:40-E 11-07 07:10 #melbournecup: 5, #foodlover: 1, #burger: 1, #foodie: 1,
#melbourne: 5

11 1.76 1.183

15 Boxing Day; Dec 26 -S 12-26 02:00-E 12-26 02:40 #boxingdaytest: 6, #beatengland: 5, #mcg: 4, #ashes2017: 3,
#kneipping: 3

10 0.007 2.1

TABLE VII
MELBOURNE DETECTED EVENTS IN 28-JANUARY 2017 USING EACH OF POI AND QUAD-TREE METHODS

# Time - Duration Top 5 hashtags/mentions (hashtag/mention : % of occurrences) Count Area

POI events

1 -S 08:30 -D 40 #ausopen: 37.5, @australianopen: 25, #williamssisters: 18.8, @serenawilliams: 12.5, #melbourne:
12.5 16 0.01

2 -S 10:00 -D 20 #nickcave: 80, #sidneymyermusicbowl: 60, #livemusic: 20, #melbourne: 20 5 0.01

3 -S 11:10 -D 40 #ausopen: 50, #womensfinal: 33.3, #rodlaverarena: 33.3, #ausralianopen: 25, #serena: 25 12 0.01

Quad-tree events

1 -S 08:30 -D 40 #ausopen: 33.3, #williamssisters: 23.8, @australianopen: 23.8, @venuseswilliams: 14.3, @sere-
nawilliams: 14.3 21 0.052

2 -S 08:40 -D 30 #ausopen: 50, #williamssisters: 25, @australianopen: 25, #melbourne: 16.7, #grandslam: 8.3 12 0.003

3 -S 10:00 -D 20 #nickcave: 80, #sidneymyermusicbowl: 60, #livemusic: 20, #melbourne: 20 5 0.013

4 -S 10:00 -D 40 #nickcave: 20.8, @serenawilliams: 12.5, #23: 16.7, #australianopen: 12.5, #sidneymyermusicbowl:
12.5 24 0.834

5 -S 10:00 -D 50 #nickcave: 13.2, @serenawilliams: 10.5, #sidneymyermusicbowl: 7.9, #23: 10.5, #australianopen:
7.9 38 13.347

6 -S 10:20 -D 20 @australianopen: 28.6, #serenavsvenus: 14.3, #23: 28.6, #venus: 14.3, #williamssisters: 14.3 7 0.003

7 -S 11:10 -D 30 #ausopen: 54.5, #womensfinal: 36.4, #rodlaverarena: 36.4, #ausralianopen: 27.3, #serena: 27.3 11 0.003

8 -S 20:50 -D 20 #melbourne: 100, #hiring: 53.8, #job: 53.8, #bourkestreet: 46.2, #careerarc: 46.2 13 0.052



TABLE VIII
RECALL RESULTS FOR CLUSTERING BASED EVENT DETECTION: MELBOURNE COMMON EVENTS OCCURRED IN 2017 (DUE TO SPACE CONSTRAINTS, 5

EVENTS ARE SHOWN)

# Event Description Date-time Entity: occurrences * Area SI

1 The Night Market; Wed 6-9pm -S 08-23 8:40 -E 08-23 10:20 #melbourne: 17, #moomba: 6, #vscocam: 3, #vsco: 3, #job: 3 65 0.25 0.5

2 Moomba Festival; 10-13 Mar -S 03-12 1:00 -E 03-12 3:50 #melbourne: 4, #davidhockney: 1, #shrineofremembrancemel-
bourne: 1, #ladiesinblack: 1, @moombafestival: 1

16 7.04 0.498

3 Melbourne Food and Wine Festival;
Mar 31 – Apr 9

Not Detected

4 White Night Melbourne; Feb 18 -S 02-18 10:30 -E 02-18 13:20 #whitenightmelb: 3, #whitenight: 5, #victoria: 1, #melbour-
nelife: 1, 0

7 0.25 1.43

5 Patti Smith performs; Apr 16 -S 04-16 10:50 -E 04-16 13:40 #melbourne: 5, #music: 4, #pattismith: 4, #livemusic: 4,
#horses: 3

12 0.25 1.67

majority of these events are just noise. This can be improved
by increasing the values of k, and N which will result in
much less number of detected events and accordingly less false
positives.

For recall, we use the same 15 common events used for recall
assessment in our approach. A total of 13 correctly detected
events according to the manual evaluation, with a recall
measure of 86.7% which is higher than the recall measure
of our approach. The reason is that the parameters used in
this experiment results in large number of true negatives as
well as large number of false positives. Parameters should be
tuned to balance the trade off between recall and precision.
Table VIII reports the date-time, top 5 hashtags/mentions with
its occurrences, tweets count, event area and SI for all events.
The false negatives are highlighted in blue in the table.

VII. CONCLUSION

In this paper, we present a multiscale spatio-temporal real-
time event detection approach which is capable of detecting
social media events of different spatial and temporal resolution
in real-time. Also, the proposed method does not require
a list of defined topics for event detection and effectively
detects both local and global events. The method is evaluated
using two different social media datasets: Twitter and Flickr.
The experiments have demonstrated that the proposed method
achieves better results than the baseline algorithm. In the
future, we plan to improve our method by taking into account
the changing structure of the constructed quad-tree over time.
Also, more experiments will be conducted to fine-tune the
parameters of the proposed method using different datasets.
The proposed method will be extended to use non-geotagged
social media data based on textual information [42]–[46].
Finally, we can also improve tour recommendation works
by planning itineraries that avoid detected events such as
accidents [47]–[51].
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