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Abstract Point-of-interest (POI) recommendation is a challenging problem due to
di�erent contextual information and a wide variety of human mobility pa�erns.
Prior studies focus on recommendation that considers user travel spatiotemporal
and sequential pa�erns behaviours. �ese studies do not pay a�ention to user per-
sonal interests, which is a signi�cant factor for POI recommendation. Besides user
interests, queuing time also plays a signi�cant role in a�ecting user mobility be-
haviour, e.g., having to queue a long time to enter a POI might reduce visitor’s
enjoyment. Recently, a�ention-based recurrent neural networks-based approaches
show promising performance in the next POI recommendation task. However, they
are limited to single head a�ention, which can have di�culty in �nding the ap-
propriate user mobility behaviours considering complex relationships among POI
spatial distances, POI check-in time, user interests and POI queuing times. In this
research work, we are the �rst to consider queuing time and user interest aware-
ness factors for next POI recommendation. We demonstrate how it is non-trivial to
recommend a next POI and simultaneously predict its queuing time. To solve this
problem, we propose a multi-task, multi-head a�ention transformer model called
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TLR-M UI. �e model recommends the next POIs to the target users and predicts
queuing time to access the POIs simultaneously by considering user mobility be-
haviours. �e proposed model utilises POIs description-based user personal interest
that can also solve the new categorical POI cold start problem. Extensive experi-
ments on six real-world datasets show that the proposed models outperform the
state-of-the-art baseline approaches in terms of precision, recall, and F1-score eval-
uation metrics. �e model also predicts and minimizes the queuing time. For the
reproducibility of the proposed model, we have publicly shared our implementation
code at GitHub (h�ps://github.com/sajalhalder/TLR-M UI).

Keywords Points of Interest (POI) · POI Recommendation · Transformer ·
Multi-tasking ·Multi-head A�ention ·�euing Time · User Interest

1 Introduction

POI recommendation problems have a�racted researchers’ interest due to their eco-
nomic and academic signi�cance. Travel and tourism are popular leisure activities,
which is also a trillion-dollar industry across the world (Statista, 2018). �e tourism
industry remains an important source of income and employment in many coun-
tries, both formal and informal sectors (Malik et al., 2010). For example, Hwang et
al. (Hwang and Lee, 2019b) claimed that Korean development and economic growth
are rapidly increasing due to changes in the elderly tourism system. �is increase
shows that visitors feel inner satisfaction, which positively a�ects their future tour
plan (Hwang and Lee, 2019a). Similarly, developing countries can boost their sus-
tainable growth and development by engendering a considerable amount of foreign
exchange from tourism. �ese extensive tourism-related services (i.e., hotels and
restaurants reservations and travel mode �xations) depend on user intention and
budget. �us, it achieves researcher a�ention to make be�er user personalised ser-
vices and contribute to global economic growth.

Most previous POI recommendation models regard user identity as an invariant
feature. However, in real-world POI recommendations, user preference may change
based on spatiotemporal features, queuing features and user interests. To improve
the travel and tourism experience, appropriate POI recommendation based on tourist
personalised interest has a�racted much a�ention from researchers in recent years
(Chang et al., 2018b; Huang et al., 2019; Yin et al., 2017; Ding and Chen, 2018; Rah-
mani et al., 2020; Baral and Li, 2018; Anagnostopoulos et al., 2017). �ese POI rec-
ommendations can be challenging because visitors 1 o�en have multiple criteria
and di�erent preferences when choosing a POI to visit next. For example, some vis-
itors may prefer the nearest available POI that they are mildly interested in, while
others might prefer one that they are very interested in despite traveling a longer
distance. Some visitors are interested in visiting their preferred POIs. Others may

1 �e terms ”user” and ”visitor” are used interchangeably.



POI Recommendation with�euing Time and User Interest Awareness 3

have dynamic preferences where their previous visits may not re�ect their most re-
cent interest preferences. Most of the deep learning techniques cannot handle mul-
tiple con�icts of immediate and long-distance priorities as well as recent and past
visit in�uence simultaneously. LSTM or RNN based approaches focus on recent vis-
its and closest preferences based on spatiotemporal dependencies. User interests do
not always depend on closest preferences. �us, learning user preference based on
spatiotemporal dependencies can not capture user intentions appropriately. Besides,
another factor that a�ects visitor’s satisfaction is the duration of queuing time.

Fig. 1 depicts an example showing the various POI similarities and signi�cance of
queuing time. Assuming that the current time is 1.00 pm and a visitor wants to go to
a restaurant for lunch. If the next POI recommendation model does not consider POI
description/category, it may recommend POID because POID is closer. Besides, if
the model only considers POI description/category and does not consider queuing
time of these POIs, it may recommend nearby restaurant A or B according to the
distance. However, these two restaurants are crowded places, and users have to wait
a long time to have their lunch which is generally undesirable. Besides this, users
might not be interested in going far for lunch on weekdays due to o�ce work, but
they might be interested in going far on weekends.�us, a queuing time-aware next
POI recommendation model that takes into consideration POIs description, queuing
information, spatiotemporal dependencies and personalised interest is more likely
to recommend restaurant C to the user as the next move.

�ese kinds of queuing time-related activities are also prevalent and important in
many other real-life applications, e.g., theme parks and popular tourist a�ractions,
restaurants, concerts, and festivals. Besides, with the COVID-19 pandemic (COVID-
19, 2019), there is a need to maintain a physical distance, and queuing takes on a
health dimension, making the queuing in�uence even more signi�cant. Moreover,
user interest based on POIs similarity plays signi�cant roles in POI recommendation.
Existing models (Lim et al., 2017; Halder et al., 2022) used POI categorical similarity
to measure user interests where values are 1 or 0 (1 means two POIs are similar cat-
egories and 0 means two POIs are di�erent categories). �ese categorical similarity-
based user interests may not measure real-valued similarity and can not distinguish
similarity levels within the same category. Fig. 1 (c) shows the similarities matrix
among the four POIs where three POIs A, B and C are restaurants and POI D is
cinema hall.

�e categorical POI similarity also faces a cold start problem when POIs of a new
category are added into the network. Although two POI categories are di�erent,
similar types of keywords may describe the POIs. �us, instead of categorical simi-
larities, description-based POIs similarities are able to solve the cold start problem.
�us, visited POI description-based similarity sequence may be practical to predict
user movement behaviour pa�erns.

�ese challenges inspired us to build a model that can capture POIs description sim-
ilarities, complex spatiotemporal dependencies, queuing time in�uence and user in-
terests for making an accurate next POI recommendation. �e problems of POI rec-
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(a) User and various POIs (b) POIs queuing time

(c) POI-POI similarities based on POI description

Fig. 1 In�uence of POI description and queuing time along with spatiotemporal features in POI recom-
mendation.

ommendation and queue time prediction are inter-dependent. �us, a single model
that jointly recommends top-k POIs and predicts queuing time is necessary.

Existing studies on POI recommendation have considered spatiotemporal prefer-
ences (Liu et al., 2016) but did not consider user preference. In another group of
prior research, user identi�cation is considered and a�ention-based spatiotemporal
in�uence based ATST-LSTM (Huang et al., 2019) and self-a�entive network SANST
(Guo and Qi, 2020) have been proposed. �ese works are appropriate for the next
POI recommendation, but they cannot support multi-tasking (recommend POIs and
predict queuing time) simultaneously. Recently, a�ention-based transformer shows
signi�cant improvement to capture all dependencies at once using non-recurrent
encoder-decoder model in volatility prediction (Yang et al., 2020; Wu et al., 2020)
and natural language processing (Devlin et al., 2018). Transformer allows multi-
tasking that relies entirely on the a�ention mechanism to compute its input and
output dependencies. In our early work TLR-M (Halder et al., 2021), we proposed
multi-a�ention layer-based transformer network leveraging complex spatiotempo-
ral dependencies whereas user personal interest based on temporal in�uence is ig-
nored. To address this issue, we use POI description similarity based personalised
interest to recommend POIs and predict queuing time simultaneously. �e main
di�erence between our proposed model and earlier transformer based multitasking
model TLR-M (Halder et al., 2021) is that our model incorporates user interests from
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one POI to another POI based on POIs descriptions which can solve POI cold start
problem whereas existing TLR-M (Halder et al., 2021) does not consider user inter-
est. To sum up, in this paper we aim to answer the following research questions.

– Are user interests important for recommending top-k POIs?
– Are user interests important for recommending top-k POIs and predicting queu-

ing times simultaneously?
– How does POI description based user interests perform compared to the POI

category based user interests?

�iswork is an extension of our previous conference paper (Halder et al., 2021). Here
we extend POI description based personalised user interest impacts on queuing time
prediction and next POI recommendation simultaneously. In this paper, we consider
user visiting POI similarity sequence for capturing use mobility behaviours appro-
priately. We propose two new models called TLR UI and TLR-M UI. Doc2vec (Le
and Mikolov, 2014) model has been used to measure the similarities between visited
POIs sequences instead of only categorical similarities. To evaluate the performance
of our proposed model, we compared our models to various state-of-the-art models
on six datasets and discuss our main �ndings. �e main contributions of this paper
can be summarized as follows:

– �is work discusses the signi�cance of POI description-based user interests and
queuing time aware next POI recommendation model. More speci�cally, the
model captures user interest behavior along with spatiotemporal and queuing
time in�uences.

– We capture user interest from visited POIs description using POI description
similarity measurement technique and applied to transformer network to en-
hance recommendation e�ciency that can solve the POIs cold start problem.

– Experiment results using six real-life datasets show our proposed transformer
model outperforms the state-of-the-art next personalised POI recommendation
based on precision, recall, F1-score and can predict queuing time e�ectively.

�e remaining parts of this study are organized as follows. �e related works are
described in Section 2. Section 3 introduces some preliminaries and problem state-
ments. A�er that, we propose TLR-M UI and TLR UI models incorporating the user
interest, queuing in�uence and spatiotemporal dependencies in Section 4.1 and Sec-
tion 4.2, respectively. �e experiment analyses with the state-of-the-art baselines
are illustrated in Section 5. Finally, we conclude our proposed model with future
work direction in Section 6.

2 Related Work

�is research is related to research on top-k POI recommendation, queuing time
prediction, transformer-based learning, and features embedding. In this section, we
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brie�y describe state-of-the-art research related to our work in each of these areas.
�en, we highlight the signi�cant di�erences between our proposed models and the
existing baselines.

2.1 POI Recommendation

POI recommendation accuracy depends on multiple factors. �e previous study
LORE (Zhang et al., 2014) incorporates geographical in�uence and social in�uence
into a uni�ed recommendation framework in the check-in dataset. Simultaneously, a
convolutional LSTM (Xingjian et al., 2015) network has been proposed to solve tem-
poral and spatial dependencies where user interest was ignored. Chang et al. (Chang
et al., 2018a) proposed a deep neural POI imputation model called DeepPIM, which
utilises textual, visual, user, and temporal features without complex pre-processing
or feature engineering in item recommendation. Zheng et al. (Zheng et al., 2018) in-
troduced a deep reinforcement learning framework to do online personalised news
recommendations using state feature and action feature representation.�ese items
and news recommendations are not appropriate for POI recommendations because
spatial distance has a signi�cant in�uence in POI recommendations. Chang et al.
(Chang et al., 2018b) proposed a context-aware hierarchical POI embedding model
CAPE for POI recommendation using the user check-in sequence and text content
of POIs whereas personalised interest was not considered. Zhou et al. (Zhou et al.,
2019b) introduced a more generic framework for POI recommendation that is su�-
ciently �exible to incorporate di�erent contextual information, but the model does
not support multitasking. A time-aware successive POI recommendation method
STELLAR (Zhao et al., 2016) has been proposed to show the e�ects of three-slice
time interval successive check-ins. Zhang et al. (Zhang and Chow, 2015) proposed a
probabilistic framework that concerns not only time slots of a day but also the day
of weekdays and weekends. �ese models are generic and can not distinguish per-
sonalised interest. Debnath et al. (Debnath et al., 2018) presented a time-aware and
preference-aware routes recommendation system. A temporal personalised model
(TPM) (Wang et al., 2018) has been proposed to recommend spatial items introduc-
ing a new latent variable topic-region by using sequential in�uence, cyclic pa�erns,
and personal interest. In these research, queuing time in�uence is ignored.

Some studies (Yang et al., 2017; Wang et al., 2017) have employed convolutional
neural networks and multi-layer preceptors to POI recommendation. �ese models
used POI images, which can not di�erentiate near and far POIs. Huang et al. (Huang
et al., 2019) proposed an a�ention-based spatiotemporal long and short-term mem-
ory (ATST-LSTM) network for the next POI recommendation, in which user interest
was ignored. �ey used user identity as user vectors that could not capture person-
alised interest appropriately. Zhou et al. (Zhou et al., 2019a) proposed a generative
discriminator-based POI recommendation model that maximizes the learned proba-
bilities distributions and optimizes the di�erences between recommended POIs and
true check-ins. However, all of these studies are single task learning models which
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recommend only next POIs to the user based on di�erent features. �erefore, we
need one model that can recommend top-k POIs and predict queuing time simulta-
neously incorporating spatio-temporal features, queuing time and user interests.

2.2 �euing Time Prediction

Due to the COVID-19 pandemic (COVID-19, 2019), queuing time has been highly
signi�cant even though researchers ignored queuing time in�uence in POI recom-
mendation. Considering queuing time, Lim et al. (Lim et al., 2017) proposed PresQ
algorithm whose objective is maximizing the POI popularity, user interest and min-
imizing the queuing time. Halder et al. (Halder et al., 2022) proposed an e�cient
E�TourRec algorithm using personalised POI selection and pruning strategies to
improve the performance of itinerary recommendation with queuing time aware-
ness and visiting time in�uence. �ese queuing time-based approaches are applied
in the whole itinerary recommendation. �erefore, none of the existing methods
predicts queuing time considering user interests in the next POI recommendation.
�us, we introduce the queuing time and user interest aware prediction model that
can recommend top-k POI and predict queuing time simultaneously.

2.3 Transformer and Multi-task Learning

�e transformer network-based model improves accuracy across a variety of NLP
tasks (Devlin et al., 2018). �e model can capture all word dependencies in a sen-
tence to predict the next word. Recently, some research works in transformer-based
model (Yang et al., 2020; Wu et al., 2020) show signi�cant improvements in volatility
prediction and event forecasting using multi-head a�ention technique. It has been
shown that the transformer model is faster than the recurrent and convolutional
layers-based models and improved performance using the multi-head self-a�ention
technique (Vaswani et al., 2017). Multi-task learning approach has been used for a
variety of research areas, i.e., sentence classi�cation and tagging (Wang et al., 2020),
entity recognition and semantic labeling (Alonso and Plank, 2017), and two di�erent
�nancial forecasting (Yang et al., 2020). None of these studies used multi-tasking in
POI recommendations. Halder et al. (Halder et al., 2021) proposed a transformer-
based multi-task learning model for the next top-k POI recommendation and pre-
dicted queue time. �is model can not capture user interests appropriately and can
not solve the new POI cold start problem.
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2.4 Feature Embedding

Feature embedding is another important factor in POI recommendation. �e ob-
jective of feature embedding in the POI recommendation is two-fold: POI features
embedding and user feature embedding. �e main goal of POI feature embedding is
to learn an encoding for POI network that e�ectively captures a POI’s crucial prop-
erties (i.e., their neighborhood POI distance, recent check-in, etc.). Similarly, user
feature embedding is to learn an encoding that can capture user visiting behavior
property. Most of existing studies (Huang et al., 2019; Zhou et al., 2019a; Halder
et al., 2021) used unique user identity as a user feature and could not appropriately
capture user behavior. In this paper, we measure user similarity based on their pre-
vious visiting POI description similarity. �is encoding is projected and processed
into a low-dimensional space. Context-aware hierarchical POI embeddingmodel us-
ing textual, visual, user, and temporal features have been proposed in (Chang et al.,
2018a). Zhou et al. (Zhou et al., 2019b) introduced a more generic framework for
POI recommendation that is su�ciently �exible to incorporate di�erent contextual
information. However, these models do not consider spatial in�uences. Several re-
cent studies (Feng et al., 2015; Hang et al., 2018; Yin et al., 2017) have shown how to
embed items into a low dimensions space based on feature inner product. Chen et
al. (Chen et al., 2020) showed that POI description-based similarity instead of only
category-based similarity performs well and can handle new POI cold start problem
e�ciently.We aremore interested in personalised next POI recommendation.�ere-
fore, inspired by their research (Chen et al., 2020), we construct user interests-based
POI visit sequence similarity using POI description.

2.5 Di�erences from Previous Studies

Our proposed next POI recommendation with queuing time and user interest model
di�ers from state-of-the-art POI recommendations in various aspects. First, we in-
troduce complex spatiotemporal dependencies along with POI sequence in trans-
former model. �e transformer model can capture nearby and long-distance POIs
visiting relationships e�ciently. Second, we present multi-task learning in POI rec-
ommendation that can recommend top-k POI and predict queuing time simultane-
ously. �e queuing time may change user intentions. �ird, to handle new category
POI cold start problem, wemeasure POIs similarity based on POI description instead
of category. �e following Table 1 depicts the fundamental di�erences between our
proposed model variants and baselines in terms of various constraints.
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Table 1 Comparison between proposed models and various baselines, in terms of considering various
constraints.

Models
Spatio- User �eue

Technique
Multi-

temporal Interest Time tasking

Baselines

ST-RNN (Liu et al., 2016) 3 LSTM
STACP (Rahmani et al., 2020) 3 Matrix Factorization
APOIR (Zhou et al., 2019a) 3 Adversarial
ATST-LSTM (Huang et al., 2019) 3 A�ention + LSTM
TLR (Halder et al., 2021) 3 Transformer
TLR-M (Halder et al., 2021) 3 3 Transformer 3

Proposed
TLR UI 3 3 Transformer
TLR-M UI 3 3 3 Transformer 3

3 Preliminaries and Problem Statement

In this section, we �rst describe key preliminary de�nitions and then describe the
problem statement.

De�nition 1. Point of Interest (POI): A POI p is de�ned as a uniquely identi�ed lo-
cation (e.g., roller coaster, museum, hotel and etc.) that can be geolocated based on its
longitude and latitude. A sequence represents a set of POIs visited by a user, P = {p1,
p2, · · · , pn} that user visits sequentially.

De�nition 2. Visit Activity: User visit activity is a quadruple vutk = (putk , l
u
tk
, tk, u)

which represents a user u visiting POI putk at location lutk at timestamp tk .

De�nition 3. Visit Sequence: A user visit sequence is a set of visit activities of the user,
represented by Vu = {vut1 , v

u
t2 , · · · , v

u
ti}. All user historical visit sequences in a dataset

are de�ned by V U = {Vu1 , Vu2 , · · · , Vu|U|}, here |U | is the number of all users.

De�nition 4. Visit Trajectory: A user visit trajectory is a subset of user visit sequence
i.e. Vu = ∪iSu

i , represented by S
u
i = {vutk , v

u
tk+1

, · · · , vutk+n−1
}, where sequence length

is n. In the sequence, if the time di�erence between two consecutive POI visits is more
than six hours, we divided it into di�erent trajectories. We ignored all the isolated POI
(only one POI belongs in a sequence).

De�nition 5. �euing Time Trajectory: �e queuing time is a triplet qpTk
= (puTk

, Tk ,
qi) representing that user u needs to wait qi time to access the POI puTk

at timestamps
Tk . �e queuing time sequence is a set of queuing time triplet Sui

q = {qpTk
, qpTk+1

, · · · ,
qpTk+n−1

}. All queuing time trajectories are indicated by QU = ∪iSui
q , where ui ∈ U .

�e length of visit sequence and queuing time sequence will be same. �e timestamps
Tk can be �xed time units, e.g., an hour or half hour-based time interval.

De�nition 6. User Interests: Let user u visit a set of POIs, e.g., {p1, p2, · · · , pn}. �e
POI pi ∈ P belongs to a speci�c relationship among other POIs based on POIs de-
scription. POIs descriptions e�ectively measure the relationship between two di�erent
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categorical POIs and various interest levels among the same categorical POIs. �erefore,
the user interests from pi to pj is de�ned as:

UIpi,pj = Similarity(Descriptionpi , Descriptionpj ) (1)

where, Similarity(.) measures the similarity between two POIs based on their de-
scriptions. �e intuition of this de�nition is that the visitor’s interest might be strongly
connected with new categorical POIs in the system network.

Problem Statement: Given the input of all user visit trajectories V U , queuing time
trajectories QU during past T timestamp and POI description, the output of our
proposed multi-task learning model is to recommend next top-k POIs to the users
and predict the prospective queuing time of recommended POIs, simultaneously.
�e model can recommend a �xed set of POIs (top-k) and can optimize queuing
time between original time and predicted queuing time.

4 Proposed Models

In this section, we describe two proposedmodel variants that are user interest aware
transformer-basedmulti-task learning recommendation (TLR-M UI)model and user
interest aware transformer-based learning recommendation (TLR UI) model. We
describe each component of our proposed models in the following sections.

4.1 �e TLR-M UI Model

�is section describes our proposed user interest aware transformer-based multi-
task learning recommendationTLR-M UImodel.�emodelmines POI description-
based user personalised interest and uses multi-head a�ention-based transformer.
Fig. 3 illustrates the architecture of TLR-M UI model. �e model takes POIs descrip-
tions, POIs locations, POIs sequence and POIs queuing time information. �e pro-
posed model captures user interests based on POI to POI description similarities.
User interest plays a signi�cant role in personalised POI recommendations. Previ-
ous studies (Lim et al., 2017; Halder et al., 2022) utilised POI categorical interests that
are unable to accurately capture POIs similarity when new categorical POI is added
into the network and faces a new POI cold start problem. To solve the new POI cold
start problem, Chen et al. (Chen et al., 2020) utilise textual information. Inspired by
the performance of textual information, we measure user visiting POI to POI de-
scription similarity sequence and incorporated it in our previous proposed TLR and
TLR-M models (Halder et al., 2021) to improve personalised POI recommendation.
Fig. 2 depicts the textual information of the State�eatre of Melbourne. We crawled
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Fig. 2 POI description.

POIs descriptions as textual information using Wikipedia API in this work. �e tex-
tual information consists of POI features, categories, history, layout, etc., which are
highlighted in bold red where standard English stop words are ignored.

From this example, we can observe that POIs from di�erent categories may still
share some similarities in various aspects despite being of a di�erent POI category.
We use Doc2vec (Le and Mikolov, 2014) model to evaluate the similarity between
POIs descriptions. A�er ge�ing textual information of each POIs, we measure POIs
description-based similarity to measure the POI-POI similarity.

Fig. 3 shows that we get user interest sequences based on user visited sequences
pa�erns and POI-POI similarities matrix. �e POI recommendation also depends
on spatial distance (Huang et al., 2019; Rahmani et al., 2020). We construct distance
sequences based on POI sequences and their distance matrix to capture the spatial
dependencies. To calculate the distance matrix, we use Euclidean distance. It has
been observed that visitors’ preferences may change based on time. �at means if
visitors start their tour in the morning, it would be di�erent if they start their tour
in the a�ernoon. �us, temporal in�uence is signi�cant for POI recommendations.
We construct temporal visit sequences from POI visit sequences to capture temporal
dependencies. �is tour should be personalised; one user interests may di�er from
the other user. In the model, unique user identity is used as a personalised indicator.
Besides these, visitors are concerned about POI queuing time. Most of the time, they
want to avoid longer queuing. To train our model, we also use POI sequence-based
temporal sequence to represent queuing time sequence from the POI queuing time
information.

Our proposed model �rst embeds all inputs into latent vectors at this input stage,
then TLR-M UI model uses these latent vectors. �e model can not take string di-
rectly.�at is why we used n dimensional space embedding. In our proposed model,
our goal is to perform multi-tasking operations that recommend top-k POIs and si-
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Fig. 3 �e architecture of proposed TLR-M UI model.

multaneously predict queuing time. Top-k POI recommendation depends on user
personalised interest and spatio-temporal dependencies. On the other hand, pre-
dicting queuing time depends on POI and their queuing time duration. Here, we
want to get the best-personalised recommendation with less queuing time. �us,
we need to combine these two objectives in one model. Transformer-based learning
approaches have been shown signi�cant improvement in natural language process-
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ing (NLP) tasks and volatility prediction (Yang et al., 2020; Wu et al., 2020). Trans-
former present state does not rely on the past hidden state like RNN and LSTM. It
allows parallel computation, which reduces training time. It also reduces the drop
of long dependency performance due to using the whole sentence instead of word-
by-word dependencies. Moreover, positional embeddings and multi-head a�ention
capture information about the relationship between di�erent words. Inspired by
the advantage that multi-head a�ention-based transformer has demonstrated over
CNN or RNN/LSTM based deep learning models, we designed our next POI rec-
ommendation model based on the multi-a�ention-based transformer model. �us,
we apply two sets of Encoder and Decoder to perform multi-tasking. For a person-
alised recommendation, we use �ve inputs that express user personalised interest
with spatio-temporal dependencies in Encoder-1 and POI sequence and correspond-
ing queuing time feature tuples input to transformer Encoder-2. Concatenating these
features using the multiplication of �ve transition metrics, we obtain x1t as input as
follows:

x1t =Wpp
u
ti +Wll

u
ti +Wtt

u
i +Wuuti +Winuin (2)

where puti , l
u
ti , t

u
i , uti and uin represent POI IDs, spatial, temporal context, user vec-

tor and user interest respectively.Wp,Wl,Wt,Wu andWin are transition matrices.
�e inputs represent all features as a real number in n dimensional space that that is
fed as input to the transformer encoder. �e main reason for these transition matri-
ces is that the transformer encoder is unable to take POIs and features string input
directly.

For queuing time prediction, we use tuples inputs which express queuing time de-
pendencies in Encoder-2. Concatenating these queuing features and POI features
using multiplication of transition metrics, we obtain x2t as input as follows:

x2t =Wpp
u
ti +Wqqti (3)

where qti is the queuing time at time ti,Wq is a transition matrix.

Each encoder consists of N layers, and each layer is composed of multi-head self-
a�ention, fully connected feed-forward followed by layers normalization (Vaswani
et al., 2017). Fig. 4 shows the basic encoder architecture where �rst layer input comes
from the element-wise addition between input embedding latent vector and po-
sitional encoding (Vaswani et al., 2017). Input embedding is represented by x =
(x1, x2, · · · , xm) with xt ∈ Rf in which each xt is a column vector of the matrix
embedding to the space REsize×f where Esize is embedding size and f is the fea-
tures number of each embedding. �e positional encoding plays a signi�cant role to
establish sequential data relationships without the use of RNNs or CNNs. �e main
idea is to add some consideration of sequential structure to thematrix embedding. To
achieve that, we use positional embedding vector PE = (PE1, PE2, · · · , PEm),
where PEt ∈ Rf with the input vector xt. �e resulting vector is x = (x1 +
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PE1, x2 + PE2, · · · , xm + PEM ). Each element of positional embedding vector
value is calculated by the timing signal manner in (Vaswani et al., 2017) as follows:

PEpos,2i = sin (
pos

100002i/Esize
)

PEpos,2i+1 = cos (
pos

100002i/Esize
)

(4)

whereEsize and pos denotes the embedding size and relative position of time value,
respectively. We de�ne 2i and 2i+1 to indicate the embedding element index with
the even and odd position, respectively. �e output of �rst encoder layer is followed
as input embedding in the next layer.

Oe = lNorm(x+ FFN(lNorm(x+MultiHead(Q,K, V )))) (5)

where lNorm(.) function represents layer normalization, FFN(.) means fully con-
nected feed-forward network, MultiHead(.) describes multi-head a�ention mech-
anism and x is input containing input features and positional encoding feature. �e
layer normalization function (Ba et al., 2016) is batch size-independent normaliza-
tion that computes themean and variance of all summed inputs to the layer neurons.
�e FFN(.) is two linear transformations with ReLU activation that takes input from
the layer normalization followed by multi-head a�ention mechanism. Position wise
input latent vector is applied in this FFN module and the same process is repeated
for as many POIs in the sequence. �e ReLU activation function is used because of
its less computational operation and ability to solve the vanishing gradient problem.

�e a�ention-based neural network can capture the correlation between latent POIs
feature and user feature representation without sequential propagation. In the pro-
posed model, the spatial, temporal, and user inter-dependencies among the time and
geographical locations are jointly considered using a�entive learning.�emain aim
is a�ending relevant pairwise POIs distance, check-in, or visiting time steps in se-
quence visits. �erefore, the quantitative relevance of visiting di�erent POIs by the
user is captured automatically using a multi-head a�ention mechanism (Vaswani
et al., 2017). �e multi-head a�ention mechanism aggregates the H times learning
process indexed from 1 to h. Each head hi is calculated by the a�entionmodel, which
can be formally represented as follows.

hi = Attention(q, k, v) = softmax(
qkT√
d
)v (6)

where q represents the one position input latent representation, k represents all the
input vector representation and v indicates the full vector representation. Here, d is
the dimension of a query as well as the key and value.�e a�ention changes v value
in encoder and decoder that are de�ned by each POIs are in�uenced by all the other
POIs in the sequence considering vector representation. Additionally, the so�max
function is used to de�ne the in�uence value between 0 and 1. �is a�ention can
be parallelized h times with the linear projection of q, k and v. �us, the system
can learn di�erent representation of q, k and v and automatically select the most
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Fig. 4 Standard encoder and decoder model.

bene�cial one for the POI recommendation during the training time. Concatenating
all heads, we �nd the output of multi-head a�ention as follows:

MultiHead(Q,K, V ) = Concat(h1, h2, · · · , hh)Wo (7)

where Q, K , and V are query, key, and value matrices that share the same input
matrix andWo is the transition matrix. Multi-head query, key and values dimension
will be h times larger than the a�ention model and equivalent to Esize. A�er the
multi-head a�ention, we use a pointwise feed-forward layer that can describe the
linear transformation of each POI from the given POI sequence. �e feed-forward
layer’s output in the encoder is fed as input to another layer and repeats N time.
�en, the �nal representation of sequence learning is sent to the decoder as Q and
K input.

Fig. 4 shows the decoderwhich consists of six layers. Here, maskedmulti-head a�en-
tion is used to avoid the current state from being generated again in the future. �is
characteristic is particularly useful for POI recommendation, where users usually do
not like to visit the same placemultiple times in a travel path or itinerary. Multi-head
a�ention, feed-forward, and normalization layers are similar to the encoder. �e de-
coder takes the same input as encoder input, with the information being shi�ed one
position right to ensure that the prediction output of position ti+1 only depends
on available outputs up to time ti. �is output embedding is transformed by mask
multi-head a�ention, multi-head a�ention, and feed-forward sub-layers using add
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and normalization functions. Each decoder’s output is repeatedly used as input in
the decoder and transformed until N repetitions. �e output is de�ned as follows:

Od = lNorm(xt−1 + FFN(lNorm(xt−1+

MultiHead(Oe, Oe,MultiHeadMask(Q,K, V ))))
(8)

In this proposed model, we use two encoders and two decoders.�e outputs of these
two encoders are concatenated and fed into decoders that share the e�ect of top-k
and queuing time together. Decoder-1 and Decoder-2 perform based on Equation 8.
�ese two decoder outputs are updated using two di�erent loss functions during
the training phase. We used a so� parameter sharing architecture in which each
task has its parameter se�ing-based model. �ese two model parameters are then
regularized to reduce the di�erence among them and encourage them to be similar.
We apply the multi-layer perceptron dropout technique to prevent over-��ing in
the training phase. �e dropout technique reduces the inner dependent learning
among the neurons and o�ers a remarkable improvement of generalization error
in network architecture (Srivastava et al., 2014). In the recommendation task, we
use the so�max function to select the set of recommended POIs. �us, the objective
function for accurate top-k recommendation is as follows:

lossr = − 1

N

∑N

i=1
[yilog(ŷi) + (1− yi)log(1− ŷi)] (9)

where yi is the original output of TLR-M UI model and ŷi is the predicted output.

In the queuing time prediction component, we use Recti�ed Linear Unit ReLU as
the activation function for the fully connected layer. We now compute the queuing
probability corresponding to POI distributions. To reduce the di�erence between
predicted probability and likelihood probability, we use the mean square error loss
function as follows:

lossq = −
∑N

i=1
[(yqi − ŷ

q
i )

2] (10)

where yqi and ŷqi represent original queuing time and predicted queuing time re-
spectively.

�erefore, our objective function is a weighted average of these two loss functions
using weight parameter α ∈ [0, 1].

loss = α× lossr + (1− α)× lossq (11)

We used Adam-optimizer (Kingma and Ba, 2014) and applied the technique of decay
learning rate with the steps until it reaches convergence. Adam optimizer combines
two other extensions of stochastic gradient descent: Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp) bene�ts. AdaGrad con-
serves a pre-parameter learning rate that improves sparse gradients’ problems per-
formances. On the other hand, RMSProp preserves pre-parameter learning rates,
which are maintained based on the average of recent gradients magnitudes for the
weight. Decay learning rate trains the model with a signi�cant learning rate and



POI Recommendation with�euing Time and User Interest Awareness 17

slowly reduces the rate until local minima. �e decay helps both optimization and
generalization. Finally, the TLR-M UI model simultaneously performs our two de-
sired tasks to recommend top-k POIs and predict their respective queuing time.

4.1.1 TLR-M UI Algorithm

Algorithm 1 presents TLR-M UI model, which takes two sets of inputs, including
POI sequence, spatiotemporal features, users, POI description based user interests
and queue time feature. At the beginning of the Algorithm 1, we initialize all pa-
rameters in line 2. �e algorithm de�nes POI to POI description-based similarity in
line 3. POIs descriptions are paragraphs and sentence ordering might not be impor-
tant. �us, we use Doc2vec (Le and Mikolov, 2014) to generate document/paragraph
embeddings, which is used to compute POI description similarities based on the vec-
tors. �en based on the batch size, we train our proposed model in lines 4-18. For
each batch size, the algorithm takes two mini-batch inputs x1b and x2b . A�er that, for
each batch size, we �nd the user interests-based POI to POI sequence similarity in
line 5. We combine the user interests with encoder inputs in line 6.

Algorithm 1: TLR-M UI Model
Data: (x1, x2)= Model inputs, PE = positional embedding, Esize: dimension size, bsize: Batch

size, POIdes: POI description
Result: TLR-M UI model {M}ui: [top-k POIs], [�euing time]

1 TRAIN MODEL:
2 Initialize all parameters
3 POI POI Similarity Matrix = Doc2vec(POIdes)
4 for (x1b , x

2
b)← sample(x1, x2, bsize) do

5 uib = poi similarity sequence( POI POI Similarity Matrix, pu, bsize)
6 I1e = x1b + uib + PE

7 I2e = x2b + PE

8 Using Equation 5 �nd O1
e and O2

e

9 I1d , I
2
d = Input(RightShift(I1e , I

2
e ), O

1
e , O

2
e)

10 Using Equation 8 fund decoder output O1
d and O2

d

11 ŷ,= softmax(O1
d)

12 ŷq = Relu(O2
d)

13 lossr = − 1
N

∑N
i=1[yilog(ŷi) + (1− yi)log(1− ŷi)]

14 lossq = −
∑N

i=1[(y
q
i − ŷ

q
i )

2]
15 loss = α× lossr + (1− α)× lossq
16 Optimize loss function
17 Build the learned TLR-M UI Model {M}ui
18 Update the parameters.
19 end
20 TEST MODEL
21 ŷtest, ŷqtest = Predict output based on Model {M}ui and testData
22 Return ŷtest, ŷqtest;
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�ese inputs feed into the encoders and generate outputs using multi a�ention-
based feed-forward network using Equation 5 in line 8. �ese two encoder outputs
are fed as input into the decoders with right-shi�ed encoder inputs in line 9. A�er
that, the multi-head a�ention layer’s output is normalized and added with the pre-
vious normalized layer output, passed to a fully connected feed-forward network,
and subsequently two probabilities distributions are generated as outputs in line 10.
�e outputs are passed with so�max and recti�ed linear unit to compute the top-k
POIs recommendation and queuing time prediction probabilities in lines 11 and 12.
Using this probability, we apply two loss functions and achieve our objectives goal
in lines 13 and 14. Furthermore, using the loss functions 13, 10 and 11 we train our
proposed model {M}ui and update all parameters in lines 17 and 18, respectively.

A�er constructing the model, we predict the next top-k potential POIs ŷtest using
our test data and predict queuing time ŷqtest in line 21. Finally, we measure our eval-
uation matrix based on output ŷtest and ŷqtest compared to ground truth labels.

4.2 �e TLR UI Model

�e TLR UI model perform single task which takes input POI IDs, spatiotemporal
and user latent features and user interest features. To model this information e�ec-
tively, we use spatiotemporal information, user interests and POI sequence as input
in the TLR UI model to learn the non-linear dependency over the spatiotemporal
context and POIs from historical tour activities. Fig. 5 depicts the architecture of
our proposed TLR UI model.

�e TLR UI model takes �ve inputs as TLR-M UI input. A�er that it passes into
Encoder and Decoder. Finally, the output of theN th decoder is passed to the so�max
layer to produce output probabilities of POIs. Among these output probabilities,
top-k high-ranked POIs are recommended to the user. �e output probabilities are
de�ned as follows.

ŷ = softmax(Od) (12)

�us, the objective function for accurate top-k recommendation is to minimize the
following equation:

lossr = − 1

N

∑N

i=1
[yilog(ŷi) + (1− yi)log(1− ŷi)] (13)

where yi is the original output and ŷi is the predicted output. We used the Adam-
optimizer (Kingma and Ba, 2014) and applied the trick of decay learning rate with
the steps until it reaches convergence.
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Fig. 5 �e architecture of proposed TLR UI model.

4.2.1 TLR UI Algorithm

Algorithm 2 presents TLR UI model, which takes inputs, including POI sequence,
spatiotemporal features, users and POI description based user interests. At �rst, we
initialize all parameters of the Algorithm 2 in line 2. �en, the algorithm de�nes
POI to POI description-based similarity in line 3. We use Doc2vec (Le and Mikolov,
2014) to generate document/paragraph embedding, which is used to compute POI
description similarities based on the vectors. �en based on the batch size, we train
our proposedmodel in lines 4-15. For each batch size, the algorithm takesmini-batch
input x1b . A�er that, for each batch size, we �nd the user interests-based POI to POI
sequence similarity in line 5. We combine the user interests with encoder input in
line 6.

�ese inputs feed into the encoder and generate output using multi a�ention-based
feed-forward network using Equation 5 in line 7. �e encoder output is fed as input
into the decoder with right-shi�ed encoder input in line 8. A�er that, the multi-
head a�ention layer’s output is normalized and added with the previous normalized
layer output, passed to a fully connected feed-forward network, and subsequently
two probabilities distributions are generated as outputs in line 9. �e outputs are
passed with so�max to compute the top-k POIs recommendation in lines 10. Using
this probability, we apply loss function and achieve our objective goal in line 11.
Furthermore, using the loss function 13 we train our proposed model {R}ui and
update all parameters in lines 13 and 14, respectively.
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Algorithm 2: TLR UI Model
Data: x1= Model input, PE = positional embedding, Esize: dimension size, bsize: Batch size,

POIdes: POI description
Result: TLR UI model {R}ui: [top-k POIs]

1 TRAIN MODEL:
2 Initialize all parameters
3 POI POI Similarity Matrix = Doc2vec(POIdes)
4 for x1b ← sample(x1, bsize) do
5 uib = poi similarity sequence( POI POI Similarity Matrix, pu, bsize)
6 I1e = x1b + uib + PE

7 Using Equation 5 �nd O1
e .

8 I1d = Input(RightShift(I1e ), O
1
e)

9 Using Equation 8 fund decoder output O1
d

10 ŷ = softmax(O1
d)

11 lossr = − 1
N

∑N
i=1[yilog(ŷi) + (1− yi)log(1− ŷi)]

12 Optimize loss function lossr
13 Build the learned TLR UI Model {R}ui
14 Update the parameters.
15 end
16 TEST MODEL
17 ŷtest = Predict output based on Model {R}ui and testData
18 Return ŷtest;

A�er constructing the model, we predict the next top-k potential POIs ŷtest using
our test data in line 17. Finally, we measure our evaluation matrix based on output
ŷtest compared to ground truth labels.

4.3 Computational Complexity

All models, including baselines, predict the probability that a user will visit a POI
based on the calculation of the dot products of user representation and POI repre-
sentation. �e models di�er in user representation and POI representation at di�er-
ent time points. �us, it is di�cult to directly analysed the model time complexity
based on the same parameters. We assume these models have the same dimension
of hidden variable (represented bym), the same size of samples (represented by n),
maximum number of check-ins l, length of time window (if required) s. Consider-
ing these variables we get ST-RNN time complexity is O(nl(3sm2 + 2m) + 2nm)
≈ O(nlm2). Considering the a�ention weights, time complexity of ATST-LSTM
model isO(nl(9m2+20m)+2nm)≈O(nlm2) (Huang et al., 2019). STACP model
used Matrix Factorization to �nd the frequency matrix based on two low-rank ma-
trices U ∈ Rm×n and L ∈ Rm×l. �us, the model complexity is O(nml). APOIR
model used Matrix Factorization and Generative adversarial networks (GANs) for
training data thus its total time complexity isO(nml). Our proposed models and ex-
isting baselines (TLR and TLR-M) used transformer architecture. �us, this model
complexity will be transformer architecture complexity. �e transformer model’s
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complexity depends on multi-head self-a�ention and so�max function complexity.
In the self-a�ention, each query assesses its compatibility with each key using a dot
product. �is dot product performs in a depth direction. Assume the query (Q) and
key (K) dimensions are n×m. �e matrix multiplication of QKT is the product of
matrix n×mmultiplied by a matrixm× n. �us, the resulting complexity is n2m.
In so�max function, n× nmatrix is multiplied by n×mmatrix, which complexity
is also n2m. In the a�ention model, we need to focus on all POI which number is
l, which is supposed to be much smaller than n. �us, the transformer replace one
self-a�ention on the whole input by n/l self-a�entions on l places. �erefore, the
total complexity of transformer model is O(n× l ×m).

In these four models, TLR, TLR-M, TLR UI and TLR-M UI complexities are same.
Although di�erent input feature numbers make the complexity variation.�erefore,
these complexities are bounded byO(nlm). Table 2 shows the proposed models and
baselines complexity analyses.

Table 2 Proposed models and baselines complexity analyses.

Models STRNN ATST-LSTM STACP APOIR TLR TLR-M TLR UI TLR-M UI

Complexity O(nlsm2) O(nlm2) O(nml) O(nml) O(nlm) O(nlm) O(nlm) O(nlm)

5 Experiments

In this section, we present experimental setup, datasets, baseline algorithms, and
evaluation metrics. For these comparisons, our proposed (TLR-M UI and TLR UI)
models and the existing baseline methods are implemented in the Python language.
Training and testing sets selection are important factors in the deep learning model.
At �rst, we construct an itinerary based on visiting POI where the �rst t steps are
used as a model design and t+ 1 step is used as the next target POI. �us, we con-
struct all the pre�xes of the input trajectories and make sub-trajectories as per stan-
dard practice (Tan et al., 2016). Di�erence in performance for our proposed models
against baselines is evaluated for statistical signi�cance using paired t-test. Experi-
mental results show that TLR-M UI signi�cantly out-performs all baselines signi�-
cantly (p ≤ 0.035).

5.1 Environments

For these results comparisons, our proposed TLR UI and TLR-M UI models and the
baseline methods are implemented in Python language. �e experiments are run on
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2.40 GHz Intel Core i5 with 8GB RAM inWindows 10. For the deep learning models,
we have used TensorFlow and Keras libraries.

5.2 Datasets

Our experiments were performed using six real datasets that are commonly used
in tour recommendation research (Lim et al., 2017; Halder et al., 2021). �e visit se-
quences of POIs are constructed based on photos taken time or check-in times to
these POIs. If the time gap between two consecutive photos taken time or check-in
time is greater than 6 hours, it is considered as a new visit sequence. For all other
datasets, we �lter out those users and POIs with fewer than 3 time visits and 3
visitors, respectively. For POI description, we collect the Wikipedia summary infor-
mation using Wikipedia API based on POI name or POI longitude and latitude as
search key. �e variations of six datasets are shown in Table 3. In our experiments,
the average performance of 10 runs is reported, wherein each run, we randomly
select the training set using 70% random itineraries and the testing set using the
remaining 30% itineraries. We know 10-fold cross-validation is be�er evidence of
the performance analyses of the models. �erefore, here is a reason to select 70%
training data and 30% testing data instead of 10-fold cross-validation. Our proposed
model works based on personalised interest. In these datasets, many users have less
than ten trajectories. If they all have at least ten trajectories, we could split train-
ing and testing data using 10-cross validation. Using 10-cross validation, we may
train the model using one set of user interests data and test the model by applying
another set of user interests. In our random selection, if users have only three tra-
jectories, two trajectories are used to train the model and another one is used for
testing purposes.

Table 3 Parameters description of various datasets.

Dataset # Photos/ #Check-in POI Visits # Users # POIs
Epcot 90,435 38,950 2,725 17
Magic Kingdom 133,221 73,994 3,342 27
California Adventure 193,069 57,177 2,593 25
Budapest 36,000 18,513 935 39
Edinburgh 82,060 33,944 1,454 29
Melbourne 17,087 5,871 911 242

5.3 Baseline Algorithms

In this section, several baseline algorithms are described to compare the perfor-
mance of our proposed TLR-M UI and TLR UI models that play a signi�cant role
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in the next POI recommendation. Among a large number of existing works (Chen
et al., 2018; Li et al., 2015; Feng et al., 2015; Cheng et al., 2012; Rahmani et al., 2020;
Liu et al., 2016; Zhou et al., 2019a; Huang et al., 2019; Halder et al., 2021), we have
considered several recent works as baselines that outperform the other baselines.
We have used these baseline codes from GitHub that the authors shared. �erefore,
the baseline algorithms related to our proposed algorithms are as follows.

– ST-RNN (Liu et al., 2016)2: A RNN-based next POI recommendationmodel that
incorporates both geographical and temporal information within the recurrent
framework.

– STACP (Rahmani et al., 2020)3: A matrix factorization based spatiotemporal
activity centers model that jointly considers both geographical and temporal
information.

– APOIR (Zhou et al., 2019a)4: An adversarial POI recommendation model that
suggests POIs based on the learned distribution by maximizing the probabilities
based on a rewarding framework.

– ATST-LSTM (Huang et al., 2019)5: An a�ention-based spatiotemporal LSTM
based next POI recommendation approach that used spatiotemporal contextual
information in check-in sequence.

– TLR (Halder et al., 2021)6: TLR is a multi-a�ention based transformer learn-
ing model model, which captures visitor’s historical check-ins spatiotemporal
dependencies for POI recommendation.

– TLR-M (Halder et al., 2021)7: TLR-M is a transformer-based multi-tasking
model, which simultaneously recommends POIs and predicts queuing time.

5.4 Performance Evaluation

To evaluate the performance of our proposed TLR-M UI and TLR UI algorithms
and existing baseline algorithms to recommend the next POI, we consider a list of
top-k recommended POIs for user u based on descending order of the probabilities.
To show the performance of our models against the various baselines, we use the
following standard metrics that were used in (Yin et al., 2017; Liu et al., 2017).

– Precision@k: Assume that Pr be next POIs in the actual visit sequence and
Pk be the top k POIs recommended. �e precision represents the ratio of the

2 h�ps://github.com/yongqyu/STRNN
3 h�ps://github.com/rahmanidashti/STACP
4 h�ps://github.com/APOIR2018/APOIR
5 h�ps://github.com/drhuangliwei/An-A�ention-based-Spatiotemporal-LSTM-Network-for-Next-POI-

Recommendation
6 h�ps://github.com/sajalhalder/TLR
7 h�ps://github.com/sajalhalder/TLR-M
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next top-k POI that is present in the original next POIs. We can de�ne the Pre-
cision@k as follows.

Precision@k =
|Pr

⋂
Pk|

|Pk|
(14)

– Recall@k: We use the same actual and recommended POIs Pr and Pk respec-
tively. �e Recall@k represents the ratio of real next POI that is also present in
the top-k recommended POI for the user u and is de�ned as follows.

Recall@k =
|Pr

⋂
Pk|

|Pr|
(15)

– F1-Score@k: �e harmonic mean of both precision and recall of a user u, de-
�ned as follows.

F1− Score@k =
2× Precision@k ×Recall@k
Precision@k +Recall@k

(16)

– Normalized Discounted Cumulative Gain(NDCG@k):NDCG evaluates the
performance of next POI recommendation based on its position in the result list,
it is de�ned as follows:

NDCG@k =
1

U

∑
u∈U

DCG@k(u)

IDCG@k(u)
(17)

DCG@k(u) =

k∑
i=1

2Relu − 1

log2(Indu + 2)
(18)

where Relu is 1 if hit@N = 1, otherwise it is 0. Indu is the index of hit position
that value is 0 to N-1. IDCG@k(u) is the ideal DCG@k(u) that means the index
value is 0 to k-1.

– Root Mean Square Error (RMSE): To evaluate the prediction accuracy of pre-
dicted queuing time and original queuing time, we use the RMSE evaluation
metric as follows.

RMSE =

√
1

N

∑N

i=1
(yqi − ŷ

q
i )

2 (19)

where N is the total number of queuing time prediction. yqi and ŷqi represent
actual and predicted queuing time respectively.

5.5 Results and Discussion

�e performance of our proposed model TLR-M UI and state-of-the-art POI recom-
mendations are evaluated based on six dataset results. In all of these result analyses,
we conduct experiments based on α = 0.5.
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5.5.1 Performance Analyses

Table 4 shows the results of proposed models against the various baselines for the
datasets in di�erent evaluation metrics. �e table shows that TLR-M UI model out-
performs the recent existing baselines in terms of all evaluationmetrics, such as pre-
cision@5, recall@5, F1-score@5, NDCG@5, precision@10, recall@10, F1-score@10
and NDCG@10 results based on six datasets. It has been shown that proposed TLR-
M UI model outperforms all the single task models and multi-tasking model TLR-M.
Among the single task model, it shows that TLR performs be�er among the base-
line in top-k POI recommendations. Our proposed TLR UI model outperforms all
single task model in all datasets. Personalised user interests based single task model
does not perform well in existing multi-tasking model TLR-M due to the advantages
of multi-task learning which is relevant with POI recommendation. �erefore, our
user interests based multi head a�ention based multi-tasking model TLR-M UI out-
performs signi�cantly than then the multi-tasking TLR-M model. Furthermore, we
perform our proposedmodels (TLR UI and TLR-M UI) with state-of-the-art POI rec-
ommendations are evaluated based on three research questions. In the next sections,
we will describe each experiment in detail.

5.5.2 POI description based user personalised performance evaluation with single task
baseline methods

�e main criteria in evaluating POI recommendations is how accurately the recom-
mended POIs re�ect visitors’ actual visit POIs. Table 4 shows the performance of
TLR UI with single-task baseline models (all models except TLR-M and TLR-M UI).
It is clear that the proposed model signi�cantly outperforms all single-task base-
lines. It is observed that the TLR model is the be�er baseline among the state-of-art
baselines. Based on precision@5, TLR UI outperforms the existing TLR POIs recom-
mendation model on the Melbourne dataset to a maximum of 32.09% (TLR UI model
result is 0.0321 and TLR model is 0.0243). �e same improvements can be observed
in terms of recall@5 and F1-score@5 metrics. We also �nd similar improvement
pa�erns at top k = 10 evaluation metrics.

It proves that user POI description-based personalised interest improves POI rec-
ommendation quality. �e analysis of this experiment answers the �rst question. It
shows that the POI description-based user interests and the transformer-based next
POI recommendation model outperform the existing baseline models. �e results
also show that the values of evaluation metrics di�er from dataset to dataset be-
cause we consider the top 5 and top 10 POIs among all POIs. �us, the Melbourne
dataset results show a low score compared to the other datasets because of the many
POIs. Our results show the same pa�ern when we change the k value, i.e., k = 3 or
15.
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Table 4 Results comparison among our proposed four models and various baselines, in terms of top 5
(Precision, Recall, F1-Score and NDCG) and top 10 (Precision, Recall, F1-Score and NDCG) evaluation
metrics in six datasets. In each metric, higher values are be�er and the best result is highlighted by the
bold blue numbers.

top k = 5 top k = 10
Models Precision Recall F1-score NDCG Precision Recall F1-score NDCG

Ep
co
t

STRNN 0.0533 0.2667 0.0889 0.0403 0.0433 0.4333 0.0788 0.0442
ATST-LSTM 0.0733 0.3663 0.1221 0.1345 0.0730 0.7297 0.1327 0.0772
STACP 0.0796 0.3982 0.1327 0.0595 0.0708 0.7081 0.1287 0.0539
APOIR 0.0782 0.3912 0.1304 0.1153 0.0720 0.7198 0.1310 0.0805
TLR 0.0911 0.4563 0.1520 0.1246 0.0724 0.7228 0.1312 0.0723
TLR-M 0.0982 0.4916 0.1638 0.1353 0.0768 0.7682 0.1396 0.0790
TLR UI 0.0921 0.4609 0.1536 0.1374 0.0753 0.7535 0.1343 0.0809
TLR-M UI 0.0986 0.4981 0.1693 0.1379 0.0773 0.7734 0.1409 0.0817

M
ag
ic
Ki
ng

do
m

STRNN 0.0459 0.2295 0.0765 0.0351 0.0492 0.4918 0.0894 0.0385
ATST-LSTM 0.0473 0.2366 0.0789 0.0862 0.0412 0.4115 0.0748 0.1016
STACP 0.0463 0.2316 0.0772 0.0356 0.0429 0.4293 0.0781 0.0327
APOIR 0.0417 0.2086 0.0695 0.1184 0.0437 0.4371 0.0795 0.1228
TLR 0.0507 0.2532 0.0841 0.1303 0.0486 0.4845 0.0880 0.0777
TLR-M 0.0602 0.3011 0.1004 0.1361 0.0498 0.4964 0.0903 0.0806
TLR UI 0.0512 0.2556 0.0852 0.1324 0.0490 0.4914 0.0896 0.0790
TLR-M UI 0.0630 0.3157 0.1051 0.1365 0.0553 0.5512 0.1003 0.0793

Ca
lif
or
ni
a
A
dv
en
tu
re STRNN 0.0291 0.1455 0.0485 0.0661 0.0364 0.3636 0.0661 0.0617

ATST-LSTM 0.0447 0.2237 0.0746 0.1026 0.0477 0.4768 0.0867 0.1174
STACP 0.0494 0.2470 0.0823 0.0376 0.0480 0.4801 0.0873 0.0358
APOIR 0.0259 0.1295 0.0432 0.0688 0.0405 0.4054 0.0737 0.0915
TLR 0.0587 0.2941 0.0980 0.1336 0.0548 0.5501 0.1000 0.078
TLR-M 0.0752 0.3757 0.1254 0.1362 0.0617 0.6157 0.1118 0.0790
TLR UI 0.0652 0.3262 0.1086 0.1401 0.0565 0.5662 0.1029 0.0805
TLR-M UI 0.0766 0.3827 0.1275 0.1352 0.0624 0.6257 0.1137 0.0793

Bu
da
pe
st

STRNN 0.0280 0.1400 0.0467 0.0337 0.0280 0.2800 0.0509 0.0320
ATST-LSTM 0.0357 0.1783 0.0594 0.0465 0.0375 0.3746 0.0681 0.0542
STACP 0.0322 0.1610 0.0537 0.0245 0.0329 0.3290 0.0598 0.0241
APOIR 0.0352 0.1758 0.0586 0.0775 0.0376 0.3764 0.0684 0.0796
TLR 0.0526 0.2626 0.0874 0.1331 0.0485 0.4845 0.0881 0.0780
TLR-M 0.0647 0.3239 0.1079 0.1396 0.0534 0.5342 0.0971 0.0810
TLR UI 0.0576 0.2878 0.0959 0.1377 0.0535 0.5349 0.0973 0.0811
TLR-M UI 0.0667 0.3328 0.1109 0.1399 0.0541 0.5425 0.0987 0.0820

Ed
in
bu

rg
h

STRNN 0.0337 0.1684 0.0561 0.0653 0.0379 0.3789 0.0689 0.0606
ATST-LSTM 0.0608 0.3040 0.1013 0.0950 0.0585 0.5850 0.1064 0.1089
STACP 0.0567 0.2835 0.0945 0.0415 0.0517 0.5166 0.0939 0.0384
APOIR 0.0512 0.2562 0.0854 0.1015 0.0531 0.5307 0.0965 0.1051
TLR 0.0761 0.3811 0.1270 0.1368 0.0652 0.6532 0.1189 0.0791
TLR-M 0.0855 0.4274 0.1425 0.1361 0.0697 0.6974 0.1268 0.0811
TLR UI 0.0804 0.4015 0.1337 0.1383 0.0675 0.6754 0.1228 0.0796
TLR-M UI 0.0969 0.4838 0.1613 0.1407 0.0714 0.7126 0.1296 0.0822

M
el
bo

ur
ne

STRNN 0.0047 0.0235 0.0078 0.0008 0.0035 0.0353 0.0064 0.0035
ATST-LSTM 0.0130 0.0650 0.0217 0.0134 0.0134 0.1338 0.0243 0.0139
STACP 0.0190 0.0950 0.0317 0.0148 0.0155 0.1549 0.0282 0.0126
APOIR 0.0052 0.0261 0.0087 0.0009 0.0041 0.0413 0.0075 0.0006
TLR 0.0243 0.1216 0.0405 0.1231 0.0190 0.1895 0.0345 0.0712
TLR-M 0.0299 0.1495 0.0498 0.1339 0.0257 0.2566 0.0468 0.0775
TLR UI 0.0321 0.1601 0.0533 0.1340 0.0260 0.2595 0.0473 0.0788
TLR-M UI 0.0325 0.1626 0.0540 0.1383 0.0297 0.2963 0.0537 0.0809
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5.5.3 POI description based user personalised performance evaluation with multi task
baseline method

To the best of our knowledge, our previous paper (Halder et al., 2021) introduced
queuing time prediction alongwith top-k POI recommendation simultaneously, which
we term multi-task learning POI recommendation. Table 4 shows that the proposed
user interests aware multi-task model TLR-M UI outperforms all the baselines as
well as our proposed user interests aware single task TLR UI model. �e user in-
terest aware multi-task model TLR-M UI outperforms on a maximum of 13.19%
on the Edinburgh dataset and on average 5.68% in terms of F1-Score@5 compared
to the TLR-M model. Similar kinds of improvements have been observed in F1-
score@10 evaluation metrics. Earlier, we have seen that our proposed TLR UI single
taskmodel outperforms all single-task baselines.�e user interests awaremulti-task
learning model TLR-M UI outperforms the single task TLR UI model. We can see
that TLR-M UI outperforms on average 14.78% compared to the single task TLR UI
model in F1-score@5 and 7.98% in F1-score@10 metrics. All evaluations metrics
show the same trends of improvement. Our proposed user interests aware multi-
tasking model TLR-M UI outperforms signi�cantly compared to the existing base-
lines in other evaluation metrics. �erefore, these results show that user interests
plays a signi�cant role in improving the next POI recommendation. �ese analyses
answer our second question, and we can say the user interests aware multi-tasking
model performs well than the single task model and baselines.

5.5.4 Users interest performance analysis between POI description and category

In this paper, we introduce POI description-based user interestswhere existingworks
(Lim et al., 2017; Halder et al., 2022) applied POI categories based users similarities
among the POIs. To evaluate the user interests based on POI categories, we devel-
oped TLR UI(cate) and TLR-M UI(cate) models where user interest sequences have
been considered based on POIs categories. If a user moves a similar category of one
POI to another, its value is 1, otherwise 0. Table 5 shows the TLR UI outperforms
TLR UI(cate) and TLR-M UI outperforms TLR-M UI(cate) in terms of precision, re-
call and F1-score values. In the NDCG metric, except for the California dataset, our
proposed TLR-M UI outperforms best among the models. �e main reason is that
the POI description-based model can di�erentiate various interest levels within the
same categorical POIs and �nd relationships among the POIs if they are not the same
category. �e categorical POIs face a cold start problem if a new category is intro-
duced to the environment. Our proposed model can �nd similarities with existing
POIs when new categorical POI is added to the environment. �us, we said that our
POI description-based user interest model outperforms the categorical user interest
model.
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Table 5 Results comparison between POI description vs. category based users awareness. In eachmetric,
higher values are be�er and the best result is highlighted by the bold blue numbers.

top k = 5 top k = 10
Models Precision Recall F1-score NDCG Precision Recall F1-score NDCG

Ep
co
t

TLR UI (Cate) 0.0902 0.4509 0.1512 0.1372 0.0730 0.7306 0.1323 0.0799
TLR UI 0.0921 0.4609 0.1536 0.1374 0.0753 0.7535 0.1343 0.0809
TLR-M UI (Cate) 0.0912 0.4562 0.1521 0.1363 0.0778 0.7789 0.1416 0.0802
TLR-M UI 0.0986 0.4981 0.1693 0.1379 0.0773 0.7734 0.1409 0.0817

M
ag
ic
K TLR UI (Cate) 0.0463 0.2313 0.0772 0.1352 0.0427 0.4259 0.0775 0.0786

TLR UI 0.0512 0.2556 0.0852 0.1324 0.0490 0.4914 0.0896 0.0790
TLR-M UI (Cate) 0.0557 0.2786 0.0928 0.1359 0.0496 0.4957 0.0929 0.0783
TLR-M UI 0.0630 0.3157 0.1051 0.1365 0.0553 0.5512 0.1003 0.0793

Ca
lif
or
ni
a TLR UI (Cate) 0.0671 0.3359 0.1119 0.1349 0.0569 0.5693 0.1035 0.0790

TLR UI 0.0652 0.3262 0.1086 0.1401 0.0565 0.5662 0.1029 0.0805
TLR-M UI (Cate) 0.0643 0.3711 0.1237 0.1315 0.0644 0.6438 0.1171 0.0783
TLR-M UI 0.0766 0.3827 0.1275 0.1352 0.0624 0.6257 0.1137 0.0793

Bu
da
pe
st TLR UI (Cate) 0.05020 0.2514 0.0837 0.1335 0.0479 0.4799 0.0872 0.0773

TLR UI 0.0576 0.2878 0.0959 0.1377 0.0535 0.5349 0.0973 0.0811
TLR-M UI (Cate) 0.0522 0.2611 0.0807 0.1349 0.0529 0.5296 0.0963 0.0773
TLR-M UI 0.0667 0.3328 0.1109 0.1399 0.0541 0.5425 0.0987 0.0820

Ed
in
bu

rg
h TLR UI (Cate) 0.0810 0.4050 0.1350 0.1323 0.0693 0.6931 0.1262 0.0780

TLR UI 0.0804 0.4015 0.1337 0.1383 0.0675 0.6754 0.1228 0.0796
TLR-M UI (Cate) 0.0842 0.4212 0.1404 0.1395 0.0671 0.6715 0.1221 0.0827
TLR-M UI 0.0969 0.4838 0.1613 0.1407 0.0714 0.7126 0.1296 0.0822

M
el
bo

ur
ne TLR UI(Cate) 0.0355 0.1782 0.0594 0.1407 0.0315 0.3127 0.0569 0.0802

TLR UI 0.0321 0.1601 0.0533 0.1340 0.0260 0.2595 0.0473 0.0788
TLR-M UI (Cate) 0.0374 0.1868 0.0630 0.0769 0.0347 0.3468 0.0631 0.0769
TLR-M UI 0.0325 0.1626 0.0540 0.1383 0.0297 0.2963 0.0537 0.0809

5.5.5 Performance of multi-task learning for queuing time prediction

�e proposed TLR-M UI model outperforms in terms of top-k POI recommenda-
tion and can also predict queuing time. �e TLR-M UI model underperforms the
TLR-M model in queuing time prediction due to the consideration of user interest
preferences. As these users prefer certain POIs that are more aligned to their inter-
est preferences, they may have to wait a long time to reach their speci�c/preferred
locations. To compare the TLR-M UI model with a baseline prediction model, we
use a single TLRq model that takes time-based queuing time and POI sequence as
input and predicts target POIs queuing time as output. In this case, the RMSE loss
function is used. We have developed an AT-LSTMq model applying the same in-
put (queuing time and POI sequence) based on a variant of the ATST-LSTM (Huang
et al., 2019) model. �e ATST-LSTMq model cannot e�ectively predict the queuing
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time, as shown by RMSE value that is higher than the TLR-M UI model values. Our
proposed model’s queuing time prediction performance is higher than the TLR-M
model because we consider user interests. We know users generally agree to wait a
li�le longer to visit their preferred locations.

Table 6 RMSE results between single and multi-task queuing time prediction. In each metric, lower
values are be�er and the best result is highlighted by the bold blue numbers.

Dataset ATST-LSTMq TLRq TLR-M TLR-M UI
Epcot 1319.9 173.09 102.48 107.50
Magic Kingdom 925.6 90.48 84.69 89.05
California Adventure 1834.2 108.68 101.50 106.92
Budapest 2157.5 147.33 129.17 136.92
Edinburgh 1755.3 136.65 113.19 127.52
Melbourne 2602.5 132.44 88.793 127.35

5.5.6 Execution time comparison

Table 7 shows the execution time comparison for the proposed model and baselines.
In the baseline model the non-deep learning model STACP is the fastest for training.
It is well known that deep learning model takes longer time to train and depends
on the number of parameters. �erefore, based on the best parameter se�ing in
the baselines, we evaluate all models in the same environment. It is clear that our
proposedmodel took less time than the other deep learningmodels.�emain reason
is that the transformer model avoids recurrent neural networks training; it works
based on a�ention and positioning weighted sequence learning. It also shows that
multi-tasking takes a longer time than single-task time. �e reason behind that is
multi-tasking used two sets of encoder and decoder. Finally, our proposed models’
testing time is comparable to the baselines.

6 Conclusion

In this paper, we introduced the problem of user interests aware next POI recom-
mendation and proposed models to solve this problem. We proposed POI descrip-
tion based user interests withmulti-head transformer-basedmulti-task learning rec-
ommendation model TLR-M UI that incorporates sequential, spatial, temporal and
queuing time in�uences for recommending top-k POIs and predicting queuing time
simultaneously. By leveraging the a�ention technique instead of a RNN architec-
ture, the model can capture whole trajectory dependencies directly and e�ciently.
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Table 7 Execution time (Second) comparison for the proposed models and baselines.

Category Models Epcot Magic K California Budapest Edinburgh Melbourne

Tr
ai
ni
ng

Non Deep STACP 29.80 36.46 27.51 11.09 19.67 10.99

Deep

STRNN 232.89 536 301.22 100.07 120.78 78.07
ATST-LSTM 103.06 418.91 175.65 17.04 24.44 35.78
APOIR 251.88 439.19 264.49 78.96 101.67 183.75
TLR 54.09 58.98 84.38 83.98 75.53 95.86
TLR-M 170.79 453.71 727.91 492.97 667.48 207.45
TLR UI 49.40 59.63 69.50 66.51 54.72 55.48
TLR-M UI 184.61 491.53 574.42 399.07 556.04 189.42

Te
st
in
g

Non Deep STACP 2.36 5.31 3.02 2.53 2.61 13.24

Deep

STRNN 1.09 2.42 1.77 0.289 0.613 0.395
ATST-LSTM 1.13 3.11 1.52 0.29 0.39 0.47
APOIR 8.61 7.83 8.22 8.09 7.29 12.47
TLR 3.22 3.11 4.51 3.40 3.45 3.57
TLR-M 6.62 10.40 11.18 9.92 12.03 7.06
TLR UI 3.16 3.17 3.25 2.97 2.87 2.85
TLR-M UI 6.99 11.41 10.99 9.84 12.82 6.57

�e model able to solve POI cold start problem. Experiment results based on six
datasets show that our proposed models signi�cantly outperform the various state-
of-the-art models.

We have studied the queuing time aware top-k POI recommendation problem and
solve the new POI cold start problem in this work. However, the models face chal-
lenges to solve new user cold start problems. In future research, we will consider
user social relationships to solve new user cold start problem and construct a full
itinerary considering the budget time that users get maximum entertainment.

References

Alonso HM, Plank B (2017)When is multitask learning e�ective? semantic sequence
prediction under varying data conditions. In: EACL 2017-15th Conference of the
European Chapter of the Association for Computational Linguistics, pp 1–10

Anagnostopoulos A, Atassi R, Becche�i L, Fazzone A, Silvestri F (2017) Tour recom-
mendation for groups. Data Mining and Knowledge Discovery 31(5):1157–1188

Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. stat 1050:21
Baral R, Li T (2018) Exploiting the roles of aspects in personalized poi recommender
systems. Data Mining and Knowledge Discovery 32(2):320–343

Chang B, Park Y, Kim S, Kang J (2018a) Deeppim: A deep neural point-of-interest
imputation model. Information Sciences 465:61–71



POI Recommendation with�euing Time and User Interest Awareness 31

Chang B, Park Y, Park D, Kim S, Kang J (2018b) Content-aware hierarchical point-of-
interest embedding model for successive poi recommendation. In: 27th Interna-
tional Joint Conference on Arti�cial Intelligence, IJCAI 2018, International Joint
Conferences on Arti�cial Intelligence, pp 3301–3307

Chen L, Zhang L, Cao S, Wu Z, Cao J (2020) Personalized itinerary recommendation:
Deep and collaborative learning with textual information. Expert Systems with
Applications 144:113070

Chen X, Xu H, Zhang Y, Tang J, Cao Y, Qin Z, Zha H (2018) Sequential recom-
mendation with user memory networks. In: Proceedings of the eleventh ACM
international conference on web search and data mining, pp 108–116

Cheng C, Yang H, King I, Lyu MR (2012) Fused matrix factorization with geographi-
cal and social in�uence in location-based social networks. In: Twenty-sixth AAAI
conference on arti�cial intelligence

COVID-19 (2019) Covid-19 pandemic. URL https://en.wikipedia.org/
wiki/COVID-19 pandemic, [Online; accessed 20-January-2021]

Debnath M, Tripathi PK, Biswas AK, Elmasri R (2018) Preference aware travel
route recommendation with temporal in�uence. In: Proceedings of the 2nd ACM
SIGSPATIAL Workshop on Recommendations for Location-based Services and
Social Networks, pp 1–9

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:181004805

Ding R, Chen Z (2018) Recnet: a deep neural network for personalized poi recom-
mendation in location-based social networks. International Journal of Geograph-
ical Information Science 32(8):1631–1648

Feng S, Li X, Zeng Y, Cong G, Chee YM (2015) Personalized ranking metric em-
bedding for next new poi recommendation. In: IJCAI’15 Proceedings of the 24th
International Conference on Arti�cial Intelligence, ACM, pp 2069–2075

Guo Q, Qi J (2020) Sanst: A self-a�entive network for next point-of-interest recom-
mendation. arXiv preprint arXiv:200110379

Halder S, Lim KH, Chan J, Zhang X (2021) Transformer-based multi-task learning
for queuing time aware next poi recommendation. In: Paci�c-Asia Conference on
Knowledge Discovery and Data Mining, Springer, pp 510–523

Halder S, Lim KH, Chan J, Zhang X (2022) E�cient itinerary recommendation via
personalized poi selection and pruning. Knowledge and Information Systems
64(4):963–993

HangM, Pytlarz I, Neville J (2018) Exploring student check-in behavior for improved
point-of-interest prediction. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp 321–330

Huang L, Ma Y, Wang S, Liu Y (2019) An a�ention-based spatiotemporal lstm net-
work for next poi recommendation. IEEE Transactions on Services Computing

Hwang J, Lee J (2019a) Relationships among senior tourists’ perceptions of tour
guides’ professional competencies, rapport, satisfaction with the guide service,
tour satisfaction, and word of mouth. Journal of Travel Research 58(8):1331–1346

Hwang J, Lee JJ (2019b) Understanding customer-customer rapport in a senior group
package context. International Journal of ContemporaryHospitalityManagement

https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/COVID-19_pandemic


32 Sajal Halder et al.

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In:
International conference on machine learning, pp 1188–1196

Li X, Cong G, Li XL, Pham TAN, Krishnaswamy S (2015) Rank-geofm: A ranking
based geographical factorization method for point of interest recommendation.
In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM, pp 433–442

Lim KH, Chan J, Karunasekera S, Leckie C (2017) Personalized itinerary recommen-
dation with queuing time awareness. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM, pp 325–334

Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model
with spatial and temporal contexts. In: Proceedings of the �irtieth AAAI Con-
ference on Arti�cial Intelligence, pp 194–200

Liu Y, Pham TAN, Cong G, Yuan Q (2017) An experimental evaluation of point-of-
interest recommendation in location-based social networks. Proceedings of the
VLDB Endowment 10(10):1010–1021

Malik S, Chaudhry IS, Sheikh MR, Farooqi FS (2010) Tourism, economic growth
and current account de�cit in pakistan: Evidence from co-integration and causal
analysis. European Journal of Economics, Finance and Administrative Sciences
22(22):21–31

Rahmani HA, Aliannejadi M, Baratchi M, Crestani F (2020) Joint geographical and
temporal modeling based onmatrix factorization for point-of-interest recommen-
dation. In: European Conference on Information Retrieval, Springer, pp 205–219

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout:
a simple way to prevent neural networks from over��ing.�e journal of machine
learning research 15(1):1929–1958

Statista (2018) Gobal travel and tourism industry. URL https://
www.statista.com/topics/962/global-tourism/, [Online;
accessed 20-January-2019]

Tan YK, Xu X, Liu Y (2016) Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st workshop on deep learning for rec-
ommender systems, pp 17–22

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polo-
sukhin I (2017) A�ention is all you need. In: Advances in neural information pro-
cessing systems, pp 5998–6008

Wang S, Wang Y, Tang J, Shu K, Ranganath S, Liu H (2017) What your images reveal:
Exploiting visual contents for point-of-interest recommendation. In: Proceedings
of the 26th International Conference on World Wide Web, pp 391–400

Wang S, Che W, Liu Q, Qin P, Liu T, Wang WY (2020) Multi-task self-supervised
learning for dis�uency detection. In: Proceedings of the AAAI Conference on Ar-
ti�cial Intelligence, vol 34, pp 9193–9200

Wang W, Yin H, Du X, Nguyen QVH, Zhou X (2018) Tpm: A temporal personal-
ized model for spatial item recommendation. ACM Transactions on Intelligent
Systems and Technology (TIST) 9(6):61

https://www.statista.com/topics/962/global-tourism/
https://www.statista.com/topics/962/global-tourism/


POI Recommendation with�euing Time and User Interest Awareness 33

Wu X, Huang C, Zhang C, Chawla NV (2020) Hierarchically structured transformer
networks for �ne-grained spatial event forecasting. In: Proceedings of �e Web
Conference 2020, ACM, pp 2320–2330

Xingjian S, Chen Z, Wang H, Yeung DY, Wong WK, Woo Wc (2015) Convolutional
lstm network: A machine learning approach for precipitation nowcasting. In: Ad-
vances in neural information processing systems, pp 802–810

Yang C, Bai L, Zhang C, Yuan Q, Han J (2017) Bridging collaborative �ltering and
semi-supervised learning: a neural approach for poi recommendation. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp 1245–1254

Yang L, Ng TLJ, Smyth B, Dong R (2020) Html: Hierarchical transformer-basedmulti-
task learning for volatility prediction. In: Proceedings of �e Web Conference
2020, pp 441–451

Yin H, Wang W, Wang H, Chen L, Zhou X (2017) Spatial-aware hierarchical collab-
orative deep learning for poi recommendation. IEEE Transactions on Knowledge
and Data Engineering 29(11):2537–2551

Zhang JD, Chow CY (2015) Ticrec: A probabilistic framework to utilize temporal
in�uence correlations for time-aware location recommendations. IEEE Transac-
tions on Services Computing 9(4):633–646

Zhang JD, Chow CY, Li Y (2014) Lore: Exploiting sequential in�uence for location
recommendations. In: Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ACM, pp 103–112

Zhao S, Zhao T, Yang H, Lyu MR, King I (2016) Stellar: spatial-temporal latent rank-
ing for successive point-of-interest recommendation. In: Proceedings of the �ir-
tieth AAAI Conference on Arti�cial Intelligence, AAAI Press, pp 315–321

Zheng G, Zhang F, Zheng Z, Xiang Y, Yuan NJ, Xie X, Li Z (2018) Drn: A deep rein-
forcement learning framework for news recommendation. In: Proceedings of the
2018 World Wide Web Conference, International World Wide Web Conferences
Steering Commi�ee, pp 167–176

Zhou F, Yin R, Zhang K, Trajcevski G, Zhong T, Wu J (2019a) Adversarial point-of-
interest recommendation. In: �e World Wide Web Conference, pp 3462–34618

Zhou X, Mascolo C, Zhao Z (2019b) Topic-enhanced memory networks for per-
sonalised point-of-interest recommendation. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
ACM, pp 3018–3028


	Introduction
	Related Work
	Preliminaries and Problem Statement
	Proposed Models
	Experiments
	Conclusion

