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Abstract. Personalized itinerary recommendation has garnered wide research inter-
ests for their ubiquitous applications. Recommending personalized itineraries is com-
plex because of the large number of points of interest (POI) to consider in order to
construct an itinerary based on visitors’ interest and preference, time budget, and un-
certain queuing time. Previous studies typically aim to plan itineraries that maximize
POI popularity, visitors’ interest and minimize queuing time. However, existing solu-
tions may not reflect visitor preferences because when creating itineraries, they prefer
to recommend POIls with short prior visiting periods. These recommendations can con-
flict with real-life scenarios as visitors typically spend less time at POIs that they do
not enjoy, thus leading to the inclusion of unsuitable POIs. Moreover, constructing
itineraries based on selected POls is a challenging and time-consuming process. Ex-
isting approaches involve searching through a large number of non-optimal, duplicate
itineraries that are time-consuming to review and generate. To address these issues, we
propose an adaptive Monte Carlo Tree Search (MCTS) based reinforcement learning
algorithm EffiTourRec using an effective POI selection strategy by giving preference to
POIs with long visiting times and short queuing times along with high POI popularity
and visitor interest. In addition, to reduce non-optimal and duplicated itineraries gener-
ation, we propose an efficient MCT'S search pruning technique to explore a smaller, more
promising portion of solution space. Experiment results in real theme park datasets
show clear advantages of our proposed method over baselines, where our method out-
performs the current state-of-the-art by 20.89% to 52.32% in precision, 8.36% to 21.35%
in Fl-score and 40.00% to 67.64% in execution time.
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1. Introduction

Tourism is one of the popular leisure activities for humans where the aim is to
visit interesting attractions in new locations. Visiting all the attractions is typi-
cally not possible as visitors tend to have limited time budgets. Thus, a critical
task for visitors is to plan an itinerary that contains popular and interesting
POIs, which must be completed within the visitor’s specific time limit. This per-
sonalized tour planning is complex due to various constraints: (i) the degree to
which a visitor has a preference for popular POIs, POIs aligned to his/her indi-
vidual interests or some combination of popularity and interest-aligned POlIs; (ii)
visitors do not like to queue, but if they have to, they prefer the POI/attraction
to last longer than conveys the earlier visitors interest; and (iii) visitor has lim-
ited time budget to complete the tour. In particular, neglecting queuing time
and solely maximizing visitor’s interest can create a frustrating experience for
visitors as they spend an unnecessarily long time queuing rather than enjoying
the attractions. In contrast, if visitors focus mainly on POIs with short queuing
times, this can also create a frustrating experience and possibly miss preferred
attractions in their itineraries. Considering these issues, it is difficult to man-
ually construct suitable itineraries that satisfy these constraints. Therefore, an
efficient and personalized tour/ itinerary recommendation approach is needed
to maximize visitor’s preferences, POI popularity and minimize queuing time
within the visitor’s time budget.

We will repeatedly use three kinds of time duration terminology to introduce
these important concepts: queuing time, visiting time, and traveling time in Fig.
1. Queuing time means the time to wait to enter a POI, visiting time means the
time visitors spend at the POI after getting access and traveling time measures
the amount of time to travel from a POI to another.

Previous research has focused on developing itinerary recommendation al-
gorithms based on an optimally-scheduled path based on POI popularity [48],
group pleasure [20, 38], mandatory POI categories [5, 35], demographic features
[6], and geographical check-in impact [8]. The prior studies [40] and [12] show
that travelling and visiting time are important factors for tour planning. How-
ever, these approaches did not consider the queuing time of POIs. Considering
queuing time, Lim et al. [36] proposed a Monte Carlo Tree Search (MCTS) based
algorithm whose objective is maximizing the POI popularity, user interest, and
minimizing the queuing time. However, they prefer a short visiting time POI
that indicates earlier visitors do not like it very much, which may lead to inap-
propriate POI recommendations when there is queuing to access POlIs.

As an illustration, Fig. 2(a) shows the POIs average visiting times of Cali-
fornia Adventure Theme Park in the US. The results suggest that visitors prefer
POIs with long visiting times rather than ones with short visiting times. As
a proxy of user’s interests, we use the number of visitors to gauge the general
interest of each POI.

Fig. 2(b) shows the Pearson correlation between the number of visitors and
visiting time of each POIs. The correlation coeflicient is 0.77, which means the
number of visitors and visiting time are positively correlated. Thus, visiting time
could be a consideration for visitors to prefer specific POIs. We hypothesize that
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Fig. 2. Illustration of prior visitors visiting time influence of each POI

visitors have to wait in a queue to enter a POIL. In the California Adventure
theme park scenario, visitors have to spend on average more than 60% time
as queuing time. In research on the psychology of waiting in queues [43, 9],
people will wait longer for more valuable service. If the queue times are roughly
the same across POls, then all things being equal, they prefer the POI with a
longer average visiting time to justify the wait. To consider this psychology, in
our proposed method, longer visiting POIs has been preferred in the itinerary
recommendation along with shorter queuing time.

Previous methods [2, 35, 36] directly or indirectly preferred to recommend
POIs with shorter prior visitor visit duration, as they aim to visit as many POIs
in the time budget to maximize the predicted interest and popularity. However,
in light of our analysis, it suggests this might lead to POIs, which are of less
interest to visitors. In addition, previous methods consider all POIs with the
same significance in their evaluation metrics, i.e., precision, recall, and F1-score
calculation, because all these metrics count the number of POIs. They do not
consider visiting time, thus in Fig. 2(a), POI 9 and POI 14, whose visiting time
is one minute and fourteen minutes, respectively. They are considered equal in
desirability. In addition, visitors have to endure long queuing times before being
able to enjoy the attraction/ride. However, selecting POIs with shorter visiting
times may increase recall value, but it can use a large proportion of time on
queuing, which can make visitors bored. In this paper, we have given special
consideration to visiting time that results in our approach may recommend less
number of POIs to the visitors within budget time than the existing research.
However, these POIs are likely of higher interest to visitors as our evaluation
shows that our precision and Fl-scores, computed against ground truths, are
significantly higher than other works.

The problem of personalized itinerary recommendation considering visiting
and queuing time involves optimizing over POIs across time. The current ap-
proach of using integer programming to optimize is not sufficient due to its long-
running times. This paper proposes EffiTourRec algorithm to construct POI
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itineraries for the visitors based on enhanced MCTS with an effective heuristic
and efficient pruning technique. An effective heuristic is introduced that suggests
POIs optimized to the visitor’s interest, POI popularity, prior visitors visiting
time, and queuing time. To reduce non-optimal itineraries generation, we intro-
duced a reward-based pruning strategy that makes our approach efficient than
the existing algorithms. The main contributions of this paper are discussed as
follows:

— We propose a new POI selection heuristic for personalized itinerary recom-
mendation by considering visitors’ various preferences, i.e., POIs popularity,
visitors interest, prior visitors visiting, queuing, and traveling time.

— We introduce an effective itinerary reward function-based level of trade-off
among prior visitors visiting time, POI popularity, visitor interests, and queu-
ing time.

— We propose adaptive MCTS based reinforcement learning algorithm Effi Tour-
Rec to make visitor itinerary recommendation more effective and efficient by
using the new POI selection heuristic and reward function strategy.

— In addition, to improve the time efficiency of our proposed method, we use
MCTS pruning technique to reduce search space by filtering out non-optimal
and duplicate itineraries in the early stages.

— We evaluate our proposed algorithm on five theme parks datasets to show our
proposed method’s effectiveness and efficiency against various state-of-the-art
baselines. We test on theme parks datasets because that is what [36] did to
compare the itinerary recommendation with queues.

— Experiment results demonstrate the effectiveness of our proposed method over
baselines; our method outperforms the current state-of-the-art by 21.04% to
50.24% in precision, 7.83% to 21.23% in Fl-score, 8.36% to 43.96% in visit-
ing time ratio with total time. It also shows the efficiency of our proposed
EffiTourRec algorithm outperforms than the baselines by reducing 51.62% to
66.59% execution time and 47.49% to 61.99% moves in MCTS compared to
the best baseline Pers@ algorithm.

The remaining parts of this paper are organized as follows. Section 2 describes
the related works while some preliminary concepts are discussed in Section 3.
Problem definition is formulated in Section 4. Our proposed EffiTourRec method
is described in Section 5. Experiments to evaluate the proposed method’s per-
formance compared with the existing baselines are demonstrated in Section 6.
Finally, we conclude our proposed method with some future directions in Sec-
tion 7.

2. Related Work

Personalized itinerary recommendation research has recently attracted signifi-
cant attention due to its various applications. There are a variety of existing
research works that cover different aspects of the itinerary recommendation prob-
lem. In the following subsections, we discuss various related works and highlight
the difference between our work and the existing works.
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2.1. General Itinerary Recommendation

Many existing research on itinerary recommendation [10, 11, 33] are based on
Orienteering Problem (OP) [49, 22] whose main aim is to maximize a global
reward point within user-defined time budget. POI popularity is frequently used
as a global reward in theme park [23, 51] and city [24, 33] itinerary recommenda-
tion. Many significant tourism-related works utilize geo-tagged photos [27, 10] for
identifying popular POIs to analyzing tourist interest. While these recommenda-
tions are interesting, they do not use visitor’s personalized interest preferences
as a fact of global reward points. Yoon et al. [54] introduced an efficient and
balance intelligent tour recommendation using global positioning system (GPS)
itineraries. Lim et al. [37] described a social media data-based tour recommen-
dation and itinerary planning models in detail as a survey study.

2.2. Personalized Itinerary Recommendation

Research in itinerary recommendations has focused on discovering different types
of itinerary recommendations based on the impacts of various constraints. These
existing works’ objectives are to recommend itineraries based on visitors’ in-
terest preference [50], particular POI visit order [21], group pleasure [20, 38],
mandatory POI categories [5, 35], demographic features [6], geographical check-
in impact [8], etc. Lim et al. [40] introduced PersTour system for personalized
itinerary recommendations based on trip constraints and visitor interest prefer-
ences using modified Ant Colony Optimization [15] algorithm. Debnath et al.
[12] presented a time-aware and preference-aware routes recommendation sys-
tem. Quan et al. [18] presented a spatial-temporal context-aware mixture model
to a user within a geospatial range. Travel time is one of the important factors
of tour planning. To focus on travel time, Irina et al. [14] designed an adap-
tive orienteering problem with stochastic travel times (AOPST) that finds the
path between the reward POIs in an integral component of the decision space.
Time constraints-based framework pirT [25] proposed a personalized itinerary
in which social network features and social relationships are used to define vis-
itor preference. Zhixue et al. [34] introduced a hybrid heuristic-based RS-H?A
algorithm that applies a random simulation-based hybrid evolution strategy in a
time-dependent stochastic environment to handle risk awareness of the tourists.
A collaborative filtering-based WMF-CR [46] approach has been proposed to
the personalized landmark nontrivial recommendations using geo-tagged photos.
Bowen et al. [16] developed a crowdedness-aware route recommendation model
for predicting the passenger transfer volumes of a specific location at a specific
time duration. These itinerary recommendation approaches do not consider the
queuing time of attractions.

2.3. Personalized Itinerary Recommendation with Queuing
time Awareness

The queuing time has significant effects on a personalized recommendation sys-
tem where a visitor has to wait a long time to get rides, i.e., a theme park
tour. The theme park ride access requires a long waiting time which can gener-
ate a frustrating experience for the users. Lim et al. [36] incorporated queuing
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time to geo-tagged photos and proposed the Pers@ algorithm by modifying the
Monte Carlo Tree Search (MCTS) for recommending personalized itineraries.
The Pers@ algorithm’s objectives are maximizing the POI popularity, user in-
terest and minimizing the queuing time. However, the method shows that rec-
ommended POIls are inversely proportioned to prior visitor’s visit duration. In
the actual scenario, POIs visit duration expresses visitors’ interest that should
be proportion for POIs selection of an itinerary.

The Pers@ [36] algorithm first used MCTS in itinerary recommendation like
single-player game [42]. Before that, most of the researchers applied Monte Carlo
Tree Search for two-player games. MCTS space exponentially increases with the
number of iterations and nodes in the tree. Different kinds of pruning techniques:
probability-based [44, 17], heuristic-based [45] reduce MCTS space in two players
game. Neil et al. [4] designed a single-player game whose objective is to transform
an initial phase into a set of goal conditions phase using automatic move prun-
ing. Although our work is based on MCTS, it differs from the earlier research
works. In our work, we consider a different heuristic for potential POI selection
and a new reward function for ensuring visitor’s preferences in the itinerary rec-
ommendation. In addition, our proposed personalized itinerary recommendation
system is like one player game, and we apply an efficient pruning technique in
adaptive Monte Carlo Tree Search to reduce the tree search space.

2.4. Top-k POI Recommendation

Most of the top-k POI recommendation works are based on collaborative filter-
ing (CF) or matrix factorization approaches. Their main objective is to make
a ranked list and recommend top-k POI to the visitors. User-based collabora-
tive filtering (UBCF) for itineraries [53] has been proposed to recommend a set
of top-k POIs for visitors considering the social influence and spatial influence.
Kotiloglu et al. [32] proposed ”Filter-First, Tour-Second” framework where the
first phase finds the top-k optional set of POIs using CF [13] that are added
to mandatory visited POIs to create a possible recommendation. An iterative
heuristic approximation (IHA) [55] method is proposed that makes attractions
set based on profits and recommends these attractions to the visitor until the
budget time is reached. Hu et al. [26] proposed travelogues and check-in infor-
mation based multi source data to capture user’s interest and find top-ranked
itineraries and recommend that to the users.

2.5. Sequences of Locations

A set of locations are ordered to generate an itinerary recommendation where the
order of locations is important. Baral et al. [1] proposed a context-aware per-
sonalized POI sequence recommendation approach by extending the recurrent
neural network and its variants. Multi-source based personalized travel sequence
recommendation [28] has been presented, which can recommend a travel sequence
rather than individuals POIs using heterogeneous metadata. Lou et al. [41] fo-
cused on sentimental characteristics of POIs and then recommended these POIs
using SPR algorithm. The geographical position has a remarkable impact on POI
recommendation [53] that visitors tend to visit nearby POIs around their homes
or office. The research works [7, 52] proposed probability-based recommendations
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Table 1. Comparison between proposed algorithm and various baselines, in terms
of considering constraints. Here max and min represent maximize and minimize
constraints value, respectively.

Algorithms Popularity Interest Queue Visit Travel Heuristics Construct Pruning
based based Time Time Time  based Itinerary Technique

UBCEF [53] v v

THA [55] v v min min Heuristic

TripBuilder [2] v v 4

pirT [25] v v min  min A* v

Lim et al. [39, 35] v v min  min v

PersQ [36] v v min min min  MCTS v

EffiTourRec v v min  max min MCTS v 4

that a closer distance between visitors and locations has a higher probability for
a recommendation. To explore the impact of spatial, temporal, and social influ-
ence, STSCR [19] model has been proposed to handle user’s behaviors properly
in sequential attractions recommendation.

2.6. Discussion of differences with previous works

Our proposed EffiTourRec algorithm differs from these previous works in vari-
ous aspects. Table 1 shows the main features of tour itinerary recommendation
works and the significant constraints faced by existing methods. First, unlike
top-k POI recommendations, our proposed method recommends a set of POIs
and constructs an itinerary considering the traveling time between POls, vis-
iting time of POI, queuing time of POI, and completing this itinerary within
user-defined time budget. Second, in contrast to existing works, our proposed
visitor personalized interest is proportional to visitors’ prior visit duration (e.g.,
more spending time means more interest). While existing works’ personalized
interest is inversely proportional to the prior visit duration (e.g., more spending
time means less interest), visitors can board. Third, we formulate a personalized
itinerary reward function by giving prior visitors’ time-based POI visit pref-
erences. In contrast, existing works did not differentiate long and short POIs
visiting time that has significant meaning in itinerary recommendation shown
in Fig 2. Fourth, previous algorithms were not concerned about various time ra-
tios with total expending time. We have shown the performance analysis based
on various time ratios between our proposed approach and existing baselines.
Last but not least, shorter itinerary construction time is an important feature
of the itinerary recommendation system because visitors would prefer to get
their itinerary recommendations without excessive delays. Thus, our proposed
EffiTourRec algorithm uses an efficient pruning technique to reduce the search
space and makes the system more than 40% time efficient than the existing
baseline algorithms.
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3. Preliminaries

Suppose that there are some visiting POIs in a city or theme park. To recommend
these POIs based on visitor interest, POIs popularity and time constraints, we
introduce the following terms, some of which have been defined previously.

Definition 1. Point of Interest (POI): Let a set of tourist points be P =
{p1,p2,p3, -+ ,pn} in the theme park or city. Each point p; € P can have prop-
erties e.g. points area, points category, travel time from other POlIs, visiting time
and queuing time.

Definition 2. Popularity of POI (PoP): Let a POI attraction be p; € P, the
popularity of p; is defined as the number of times p; has been visited by the
visitors U and it is defined as:

PoP(p;) = Z 6(u,p;) (1)

uelU

where, §(u,p;) = 1 if the visitor u € U visits POI p; in his/her tour, otherwise
0(u,p;) = 0.

Nowadays, photo sharing and social media sites provide many avenues for
users to share photos of their daily experiences, many of which involve inter-
esting places they have visited. Thus, visitors are interested in taking photos in
their preferred attraction and the number of taking pictures reflects the level of
interest of any attraction. Although POI popularity is the same for all visitors,
the interest relevance of a POI differs from visitor to visitor. Each visitor will
have their independent interest preferences. We can find user’s interest in par-
ticular categorical POIs in three different ways: (i) number of taken photos; (ii)
amount of spending time; and (iii) number of repeated visits. Therefore, in this
paper, we consider user interest based on the number of taken photos, which
has been applied in the baseline algorithm Pers@ [36]. User’s interest feature
selection may change the efficiency of the proposed and baselines algorithms.
Effective user interest features selection or concatenation approach of multiple
features to express users interest may be another research direction. However,
this research’s main aim is to propose an effective and efficient itinerary recom-
mendation considering similar features like baselines.

Definition 3. Interest of POI (IoP): Suppose that C represents the set of all
POI categories and each p; € P is associated with a certain category ¢ € C.
Furthermore, F is the set of photos taken by visitor u in these POIs. Therefore,
the interest level of visitor u in category c is defined as:

IoP,(c) = % Z Meg=1¢),VeeC (2)

qeF

where, A(¢; = ¢) = 1 if the visitor u takes photo q which category is ¢, in a
POI that belong to category c, otherwise A(c, = ¢) = 0. The intuition of this
definition is that the visitor takes more photos of a POI (category) if he/she likes
it.

Definition 4. Itinerary History (IH): Suppose a visitor u visits & number of
POlIs, we can represent visitor itinerary history as an order of visiting points
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sequence,

d d d
IH, = ((ph thl ) tupl)v (p27 thzvtuzm) T (pka thkvtupk)> (3)

in which the triplet (p;, tﬁpi,tﬁpi) conveys the visited POI p;, the arrival time

and departure time at POI p; are ¢, and td | respectively.

up;?

Definition 5. Itinerary Sequence: Based on the itinerary history I H,, of a vis-
itor u, we further process this extended travel history into smaller travel se-
quences. Thus, we divide this itinerary history into multiple itinerary sequences
i.e. sub-sequences of I H, if the travel duration between two constitutive POI
is TDoP(py,pz+1) > 7. In this paper, we consider 7 = 8 hours. For a visitor u
with n number of itinerary sequences, we use IH!, TH2,---  TH™ that represent
travel sequences in temporal order i.e. I H} visited before I H2.

Definition 6. Visit Duration of POI (VDoP): Suppose a visitor v € U visits
pi € P at time tj,, and leaves at time tﬁp , then the visit duration of visitor
u at p; is VDoP(u),, = t4, —t% which represents one visit duration. For all
visitors W C U who have visited p;, we can determine the average visit duration
of POI p; as follows.

VDOP pl |W| Z up; up1 (4)
ueWw

where |W]| is the number of visitors who visit the POI pj.

Definition 7. Travel Duration of POI (TDoP): Suppose a visitor « completes
his/her visit at POI p, at time t¢ and start/arrival visit at POI p, at time

uUpq
tep,» then we define the travel duration of two sequential POI from p, to p, as

TDoP(pg,pr) =t tﬁpq

upr.

Definition 8. Queuing time of POI: In general, each POI p; € P can also be
associated with a queuing time after arriving at POI p;, e.g., queuing to buy a
ticket, to ride a roller coaster, etc. Suppose that visitors W C U who visit POI p;
and ¢ is the visiting time, then we can designate the queuing time as a function
of timestamps ¢ and POI p; as follows.

1
Que“€;¢:W g u(pi)< upl—ta )—VDOPpi), where tz <t<tzpl (5)
uew

where p(p;) = 1 if visitor u visit POI p; at timestamps ¢, otherwise p(p;) = 0. In
short, we find the queuing time at POI p; based on the total time spent at an
attraction subtracted by its average visiting time.

4. Problem Definition

We define the personalized itinerary recommendation problem, with the main
objectives of maximizing the popularity, visitor interest, visiting time of each
POI visited /recommended, and minimizing the queuing and travel times. As
visitor interest is determined by the visitors spending time and visitors taking
photos of visiting attractions, it is relevant to construct a personalized itinerary.
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We denote this problem as the EffiTourRec problem. Another objective is to
recommend attractions to the visitor in a shorter time than the existing systems.

Given a set of POIs P = {p1,p2,ps, " ,Pn}, a time budget T, a starting
POI p; and destination POI p,,. Our main goal is to recommend itinerary I =
{p1,-+ ,pn} that maximize the total reward ensuring the itinerary is completed
within the given time budget T". The reward function is calculated based on POI
popularity, visitors’ interest, visiting time and queuing time of POI p; as follows.

PoP(p;) * IoP(cy;) * VDoP(p;)
max E E Path}, ;X ( Qucuct ) (6)
bj

pi€l p;€1,pi#p;

where Path;hpj = 1 if visitor visits p; and p; as a sequence in an itinerary
history, and Pathf,i’pj = 0 otherwise. PoP(p;) represents the popularity of POI
p;j, while ToP(cp,) indicates user interest based on number of taken photos in the
category of POI p; and V. DoP(p;) indicates the prior visitors average visiting
time of p;. Moreover, Queue;j conveys average queuing time at timestamp ¢ in
POI p;. The main objective of this research is to maximize popularity, interest,
visiting time and minimize queuing time. Therefore, we maximize popularity,
visitor interest and prior visiting time as the numerator and queuing time as the
denominator in equation 6. To emphasise the balance among popularity, interest
and visiting time, we use multiplication among them. The idea is similar to
probability multiplication, which is known to work well when different measures
are independent and have equivalent value ranges.
Moreover, the following constraints are aggregated to solve the Equation 6.

Z Path, , = Z Path}d =1 (7)

pi€l,i#1 pj€l,j#n

Constraint 7 ensures that the recommended itinerary starts at a particular
POI p; and ends at specific POI p,,.

> Path , <1 and Y Pathit? <1 (8)

PiPk Pk,Pj
pi€l k#n psELk#1

Constraint 8 indicates that all selected POIs in an itinerary are connected
and no POlIs are included more than once.

Z Z Timet(pi,pj)Path;“pj <T (9)
pi€l pjel,pi#p;

Constraint 9 confirms that the recommended itinerary will be completed
within budget time T. Here the time function is calculated based on travel time,
visiting time, and queuing time using the following Equation 10.

Time(pi,p;) = TDoP(pi, p;) + V DoP(p;) + Queuey,, (10)

The main goal of this research is to propose an effective and efficient personal-
ized itinerary recommendation system that can conduct practical and significant
tourism parameters e.g. POIs popularity, visitors’ interest, starting and ending
POIls, and time constraints including budget time, queuing time, visiting time
and travel time.
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Fig. 3. Working steps of proposed EffiTourRec recommendation system

5. Proposed EffiTourRec Method

In this section, we introduce our proposed approach. We design an adaptive
Monte Carlo Tree Search (MCTS) based Efficient Tour Recommendation (Ef-
fiTourRec) system for personalized itinerary recommendation using realistic ef-
fective heuristic and efficient pruning technique. The main purpose of using adap-
tive MCTS is that it can be adaptive to run only a fixed number of iteration or
a fixed amount of time and has been shown [36] to be a good search strategy for
showing itinerary paths. Fig. 3 depicts our proposed EffiTourRec recommenda-
tion system working steps. At the first step, the system takes the data from the
input databases, which consists of a POI network, visiting sequence and queue
information. Second, the EffiTourRec system finds a set of POIs for the visi-
tor by using an effective heuristic. These POIs create a personalized itinerary
recommendation that visitors get maximum entertainment by maximizing visi-
tors’ interest, POI popularity, visiting time and minimizing queuing time. Our
proposed effective heuristic method is applied to select potential POI at the
adaptive Monte Carlo Tree Search selection step. We also applied an efficient
pruning technique that allows us to explore a smaller, more promising portion
of the solution space, thus our method requires a shorter running time. The fol-
lowing sub-section formalizes the concepts and presents a detailed description of
adaptive MCTS that is used in our proposed EffiTourRec method.

5.1. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a well-known reinforcement learning algo-
rithm that not only has been successfully applied to artificial intelligent (AI)
games (e.g., chess, go, Othello) [3] but also has been applied in personalized
itinerary recommendation [36]. In the personalized recommendation system, each
move from a node to a child node is considered as a variable cost, such as tour
time, in contrast to the uniform cost of board games. This variable cost is time-
dependent because queuing time at the same attraction depends on the crowd,
which is high at peak time and low at the off-peak time. Thus, the itinerary rec-
ommendation result is measured by the complex reward function that aims to



12 S. Halder et al.

maximize POIs popularity, visitors’ interest, visiting time and minimize queuing
time instead of board game binary reward win or lose. MCTS and our approach
run over a number of iterations and each iteration consist of four steps.

Selection step is used for traversing the POIs from starting POI to last visit
POI. After that, the expansion step is used to decide how many and which POIs
are considered as the next potential POIs in the itinerary recommendation. Then,
the simulation step is used to complete the itinerary recommendation starting
POI to ending POI. Finally, the reward function of Monte Carlo evaluation
is propagated back to the starting POI using a back-propagation strategy. We
describe each part of our proposed adaptive MCTS steps in detail.

Step 1: Selection: At each iteration, the MCTS begins at starting POI as a
tree root node and moves recursively through the tree child node to expand based
on the tree policy until it reaches destination POI or unvisited POI. In the most
common tree policy, the next node is selected by the Upper Confidence Bound
Tree (UCT) [29], which is improved and applied in the personalized itinerary
recommendation by the Pers@ [36] algorithm, using an additional heuristic for
selecting the next potential POI p;.

Potential POI Path Reward

UCTPersQ — PoP(p;) + IoP(cp,) N total Reward,,
P; VDoP(p;) + TDoP(p;,p;) + Queuel, — visitCounty,

Exploitation (11)

2lnvisitCount,,
+2C, \/pj

visitCountp,

Exploration

In Equation 11, the first part Potential POI used a heuristic to select the
next potential POI to favor the POIs with higher popularity and interest but
with the lower associated traveling, visiting and queuing time. The second part
Path Reward used for existing path rewards based on POI popularity, visitor
interest and queuing time from starting POI to POI p;. These two parts express
the Exploitation of itineraries from source to potential candidate POI p;. The
Exploitation ensures the best itinerary path is found thus far. The third part,
Exploration controls the number of POIs that have not been visited previously.
The parameter C), fixed the value of exploration of POIs which the best value is
% determined by Kocsis and Szepesvéri [30] as it satisfies Hoeffiding’s inequality.

We observe that the proposed UCT in the earlier Pers() suffers from three
shortcomings. First, the PersQ [36] system did not consider visitor visiting time
as visitors’ interest or preferences, it only considers the number of visitors who
visited the POI and the number of taken photos in that POI as the visitor
interest. Second, Pers@ cannot differentiate the persons’ interest who spend
more time in an attraction than the others because the popularity of attraction
is measured by the number of visitors, not their spending time. Third, in the
proposed Pers@ algorithm next potential POI selection is inversely proportional
to prior visit time, which means if prior visit time is large, then POI selection
probability will be less. This is contradictory with real-world behaviour because
prior visit time is typically proportional to the visitors’ interest. That means if
prior visitors spend more time in a POI, they will likely like it very much.
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To overcome these three shortcomings, we propose an effective heuristic-based
potential POI selection method which is based on the POI popularity, visitors’
interest, POI visiting time and POI queuing time.

Potential POI Path Reward
U CTES fiTourRec _ PoP(pj) x IoP(cp,) * VDoP(pj) total Reward,,
Pi T'DoP(pi, pj) + Queuel, visitCount,,
Exploitation (12)
2lnvisitCount,,
+ 20]) —p7
visitCountp,

Exploration

The main reason for the effectiveness of our proposed method compared to
the existing Pers@ method is due to its Exploitation part. Exploration part is
the same for both methods. The exploitation part consists of two parts that
ensure the best itinerary path is found from starting POIs to current POI p;
and select next potential POI p;, respectively. In the first part, Potential POI
ensures the selected p; maximize popularity, visitor interest and prior visitors’
preferences and minimize queuing time and traveling time. Here, POI popularity
depends not only on specific user previous visits but also on previous users’
repeated visits. Similarly, POI visiting time does not depend on signal users,
and it also depends on other users spending time on that particular POI. That
is why user interest measured by the number of taken photos does not depend on
POI popularity and POI visiting time. On the other hand, POI popularity and
POI visiting time are not dependent each other. Thus, we consider these three
factors and there are potential overlaps between them. Maximizing these three
factors, we cover potential overlap and balance the multi-factors preferences,
which finds the strong relationship among the factors. It will cover both user’s
interest independent and dependent factors. We have used multiplication among
these features that objectives are maximizing values. This multiplication value
trends to be affected by one feature which value is very large. To avoid this
unexpected trend, we use normalization and all factors values within 0 to 1 range.
In the second part, Path Reward mentions the existing itinerary from starting
POI to current POI p; is the best itinerary based on the reward function. The
reward function measures itinerary rating considering POIs popularity, visitors’
interest, prior visitors’ preferences and queuing time.

Fig. 4 illustrates a toy example that highlights the difference between our
proposed and existing heuristics. Assume that visitor u completes POI A visit.
The next POI to be visited will be selected based on UCT values among these
three POIs. Consider Path Reward and Exploration are the same at this mo-
ment. Therefore, the value of UCT to select the next potential POI depends
on the only Potential POI part. The existing Pers() selects next potential POI
C because it potential POI value is larger than others. The potential POI val-
ues of these POIs are like this: POI B = (250+200)/(10+5+30) = 10, POI C
= (2504200)/(54+5430) = 11.25, and POI D = (2504200)/ (15+5+25) = 10.
On the other hand, our proposed heuristic recommends the next potential POI
D because it potential POI value is maximum among these three POIs. These
values are: POI B = ((200/200) * (250/250) % (10/15))/((5 + 30)/35) = 0.667,
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Fig. 4. The example illustrating the effectiveness of our proposed heuristic com-
pared to the existing Pers@ heuristic. It shows that prior visiting time is pro-
portion to user interest in itinerary recommendation.

POI C = ((200/200) x (250/250) * (5/15))/((5 +30)/35) = 0.33 and POI D =
((200/200) * (250/250) * (15/15))/((5 +25)/35) = 1.17.

In the above discussion, it is clear that the existing Pers@ method always rec-
ommends minimum visiting, travel and queuing time in which visitor spends only
5 minutes for enjoying POI C and 35 minutes for traveling and queuing purposes.
This recommendation spends much waiting and traveling time. In contrast, our
proposed method recommends POIs whose visiting time is maximum and travel-
ing and queuing time are minimized. Hence, a visitor spends 15 minutes to enjoy
POI D and 25 minutes for traveling and queuing purposes that makes visitors
happier than the state of the art Pers@. For the readers’ easy understanding,
we consider all POIs popularity is same and visitor interest to all these three
categories are uniform.

Step 2: Expansion: If the selected POI is not the ending POI, then one POI
is added to the itinerary to represent this move by selecting one unvisited POI
child, which is selected randomly. All these unvisited POIs are not significant.
There are some POIs with long queuing times that can make visitors bored. To
avoid these POls, we have used a pruning technique that will be described in
detail in the next section.

Step 3: Simulation: The selection and expansion steps are repeated until
the visitor reaches the destination POI or exceeds the time budget. If the process
continues and does not reach the destination POI within a fixed budget time,
then the system cannot create a recommended itinerary. These itineraries, which
are not ending with destination POI, are not considered as successful itineraries.

Step 4: Back-propagation: The itineraries of simulation results are back-
propagated from the current POI to starting POI through the ancestor-selected
POls, updating the reward function until it reaches the starting POI. We choose
a reward function that reflects the POI popularity, interest, visiting time and
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queuing time. The reward function is associated with each iteration, and it dif-
fers from the existing Pers@ [36] algorithm, and it is defined as:

Reward = Z

pj EIHtewnp

PoP(p;) * IoP(cy,;) * VDoP(p;)

t
Queuepj

(13)

In this reward function, our main objectives are to maximize POI popularity,
user interest and visiting time and minimize queuing time. This function is more
effective than the existing function because the existing reward function does
not consider visiting time as a factor to determine the reward function.

5.2. Efficient Move Pruning

MCTS runs a fixed number of iterations and each iteration generates an itinerary,
which may be successful or unsuccessful. An itinerary that ends at the specified
destination POI is a successful itinerary, while one that fails to do so is an
unsuccessful one. All these successful itineraries do not achieve the same reward
points. Therefore, the itineraries that achieve non-optimal we want to avoid to
reduce unnecessary search and expansion time. On the other hand, the proposed
method can generate the same successful itineraries multiple times, which is
again redundant and time-consuming. To solve these time-consuming itinerary
generations, we propose a new MCTS pruning technique that can prune duplicate
itineraries and non-optimal itineraries at the early stage. This pruning technique
reduces search space remarkably without the loss of successful itineraries. This
pruning reduces time complexity or space complexity and makes the system more
efficient.

We consider cumulative itinerary reward point (IR) and cumulative itinerary
time (IT) data structures to remove these low-quality and duplicate itineraries.
The cumulative itinerary reward point and cumulative itinerary time are rep-
resented by I R;j and I T;j, where ¢ indicates the itinerary POIs length and
p; mentions POI in the itinerary. Then, whenever the algorithm creates a new
itinerary from starting POI to destination POI, its prune factor (PF), defined by
the ratio of cumulative reward points and itinerary time will be checked. If the
itinerary consists of the same POlIs at the same length position with less or equal
prune factor value compared to the existing optimal one, the algorithm prunes
search space considering low rewarded itinerary or duplicate itinerary using the
following equation.

MCTSpryne =1f (current,PFflj <= emisting,PFflj) (14)

where, current,PFij and existing,PFflj mentions current prune factor and
existing prune factor at POI n; in position ¢, respectively. The following equation
represents the prune factor.

lél lil

PE = (Y 1)/ Y m) 15

1,p]‘€l 1,pj€I

where [ R;,j mentions cumulative itinerary reward and IT;J_ indicates the
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Fig. 5. The example illustrating the efficiency of our proposed pruning technique.
It prunes MCTS space which makes non-optimal and duplicate itineraries.

cumulative itinerary time from starting POI to POI p; and i presents the length
of the creating itinerary.

We further elaborate on this pruning technique using the following example.
Suppose that, in Fig. 5 a successful itinerary is I = (A —D—>FE — C), which
length is 4. The cumulative itinerary reward points and cumulative itinerary
time are IRY =5, IT} =3, IR% =10, IT3 =5, IR}, =17, ITs. =7 IR}, = 20
and IT{ = 10. Then, the algorithm creates a second itinerary A — C as POI
C is not visited yet as the second POI in the itinerary. After that, when POI E
is selected as the next potential POI it creates low prune factor (17/9 = 1.89)
than the existing POI E prune factor (17/7 = 2.43) at the third position in the
first itinerary. Thus, the system can prune remaining MCTS traversing, which
generates low-quality itineraries. In this same process, the algorithm can prune
remaining tree search whether they find a low prune factor at POI C and POI
E in third and fourth itineraries, respectively. This approach ensures low-quality
itineraries generation are pruned early, making our proposed system faster with-
out losing any information. Besides this, sometimes MCTS generates duplicate
itineraries with the same prune factor. Suppose the fifth iteration generates a
duplicate itinerary. In that case, the algorithm can prune this itinerary genera-
tion whenever it finds that the prune factor of POI D is the same as the existing
value. Therefore, the system can avoid huge tree searching using this pruning
technique. This example exhibits that itinerary reward and time are small in
which the ratio value may be the same for different levels. In reality, it is in-
frequent to find the same prune factor in different levels of itineraries because
the prune factor depends on five constraints e.g. POI popularity, visitor interest,
traveling, visiting and queuing time. In this way, our proposed MCTS pruning
technique reduces the MCTS space, making the algorithm more efficient than
the existing system.

5.3. EffiTourRec Algorithm

Algorithm 1 shows an overview of our proposed EffiTourRec algorithm in which
inputs are POIs information (e.g. popularity, queuing time, visiting time and
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traveling time etc.) represented by P = {p1,p2,- - ,pn}, starting POI p; € P,
ending POI p,, € P, starting time t,, and time budget T' for completing the
visitor itinerary. The output of this algorithm is recommended itinerary I =
{p1,-*+ ,pn}, which starts from POI p; at time ¢, and reaches at POI p,, within
the time limit ¢, + 7.

Algorithm 1: EffiTourRec-Overview of Algorithm

Data: P = {p1,p2, - ,pn}: POl information; Queuel: Queuing time
of POI at different times; p; € P: Staring POI; p,, € P: Ending
POI, t,: Staring time of itinerary, T: Total time budget;
maxLoop: Number of Iterations

Result: I = {p1, -+ ,pn}: Recommended Personalized Itinerary

1 Tyisits < emptyTree; Treward < emptyTree; /* Initialize visit
count and reward tree */
2 Tprune < emptyTree; [* Initialize MCTS pruning tree */
3 I < NULL; /* Initialize list of itineraries */
4 for Iterations < 1 to maxLoop do
5 Itemp < D1
6 pi < p1; pj < 0; totalTime < 0; tempReward < 0;
7 while totalTime <T do
8 2 — SelectNeactPOI(pi, Tvisitsa Treward; Itemp);
9 Liemp < LtempUpj; /% Append p; to temporary itinerary
*
10 totalTime < totalTime + T DoP(p;,p;) + Queue;, + V DoP(p;);
11 tempReward < tempReward + Reward(p;)
12 if Tpruneld, pj] # null and Tprune(d, p;] > % then
13 Break Loop ; /* Prune low rewarded and duplicate
itineraries */
14 if p; == p,, then
15 | Break Loop;
16 | Pi < Py
17 BackPropagationC (Iiemp, Tvisits);
18 if p; == p,, then
19 Reward < Simulate(Liemp);
20 BackPropagationR(Itemp, Tvisits, Treward);
21 for Vp; € Iiemp do
. C lativeR d(Itemp,Pj
- Tyruncliopy] = Cpptieoserdlionss) . v Update
Pruning Tree */
23 | Tiist < Tist U Itemp§

24 I + maxReward(I};st);
25 Return I; /* Return best itinerary */

To apply MCTS in our itinerary recommendation system, we consider the
root node as the starting POI of an itinerary and its child nodes as next potential
POIs that can be visited. The start of Algorithm 1, it initializes three similar
trees for measuring the amount of spending time, reward points and prune POI
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named Tyisits, Treward and Tprune by the emptyTree ( in lines 1 and 2). The
emptyTree root node is POI p; and child nodes are set of POIs p; € P, up to a
depth of |P| (the number of POI in the visiting theme park). Here, the traversal
of POI from root to leaf represents an itinerary I = {p1,p2, - ,pn}, with py
as the selected POI at depth 1, po at depth 2, and so on until it reaches leaf
prn, at depth n. Initially, Ij;5; set is empty at line 3 that is used to store a set of
exploring itineraries from iteration 1 to maxzLoop. This algorithm runs a fixed
number of iterations mazLoop in line 4. Each iteration (lines 4-29) executes a
single run of adaptive MCTS and generates a possible recommended itinerary.
The possible itinerary Iiem, is initialized by first visiting p; at line 5. Then, line
6 set current POI is staring POI p;, next POI is empty and expending time
totalTime and tempReward are zero. The procedure SelectNextPOI() selects
next potential POI using effective Upper Confidence Bound heuristics until the
visitor expending time exceeds the given budget time or next POI selects ending
pr in lines 7-19. This SelectNextPOI() method in line 8 reflects the selection
and expansion steps of our proposed adaptive MCTS and describes further in
Algorithm 2. Every time the selected POI appends to the temporary itinerary
and visitors expending time and temporary itinerary reward update in lines 9-11.
Then, the temporary itinerary is checked whether it has been explored already
or has generated low quality or duplicate itinerary in line 12. If it generates low
quality or duplicates itinerary, the search stops and prunes the remaining POI
traversing in line 13. On the other hand, if the temporary itinerary is new or
creates a high-quality itinerary, select next POI as the current POI and continue
until it reaches budget time or find the destination POI as selected POI in lines
15-18.

After that, BackPropagation() method updates visited POIs in T;s;:s based
on the recommended POIs in temporary itinerary Iiem,p at line 20. If the tempo-
rary itinerary Iiem;, completes with the ending p,,, the model applies the obtained
reward to the itinerary Iiemp at line 22. Then it updates the accumulated re-
wards of visited POIs in Trewqrq at line 23. Then, the pruning tree Tpryne is
updated based on cumulative reward and cumulative time in lines 24-26. Here,
Cumulative Reward(Iiemp, p;) and CumulativeTime(Iiemp, p;) calculate cumu-
lative reward and cumulative time spending from staring POI to POI p; in
itinerary Iiemp, respectively. After that, the temporary itinerary Itc,, appends
to the itinerary list I};5; at line 27 and finds the best (highest rewarded) itinerary
I at line 30. Finally, the algorithm EffiTourRec returns the best itinerary I to
the visitor at line 31.

Algorithm 2 illustrates the selection process of next potential POI by Selec-
NextPOI() function that takes current p;, visit count tree, reward tree as input,
current creating itinerary and returns next potential POI (p,) which maximizes
the Upper Confidence Bound denoted as UCTE/fiTourRee - At first, the algo-

rithm counts the number of visitors who visit p; based on Ty;s;+ tree at line 1.
Initially, the next potential POIs, upper confidence bound and existing itinerary
are initialized in lines 2-4. To select the best next potential POI, each p; con-
nected with p; but does not exist in the current creating itinerary Ity calculates
upper confidence bound and finds a best potential POI in the lines 5-16. Each
POI p; connects to POI p; counts the number of visitors at line 6. Then, the
total reward of these POIls is measured based on popularity, interest, visiting
time and queuing time in lines 7 and 8. The exploitation value of p; represents
the itineraries with high rewards, relative to the number of chosen POI at line
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Algorithm 2: Select Next POI(p;, Tyisit, Treward, I)

Data: p; € P: Current Point of Interest; T,;sits: Tree of visit count;
Treward: Tree of reword count; Iiem,: Existing Itinerary;
Result: p,: Next potential POI of personalized itinerary
1 visitCounty, < GetVisitCount(p;, Tyisit);
2 pp 0 /* Next potential POI is empty — */
8 UCTEITTourRee  0; UCT 0z < 0;
4 Itemp — Itemp Upi;
5 for p; € P and p; ¢ Iiemp do
6 visitCounty,, + GetVisitCount(p;, Tvisit);

PoP(pj)*IoP(cpj)*VDOP(pj)
7 | totalRewardy, < 35, cp . ( Queucy, );

8 GetTotal Reward(p;, Treward);
PoP(pj)xloP(cp;)xV DoP(p;) | totalRewardy; |
TDOP(PMP;‘)-FQueuer visitCount,,

9 exploit,, <

2ln(’uisit00untp7)

10 6$pl07’6pj — 20}0 visitCountp,

11 UCTf;ff”T“"TR"‘C < exploity, + explorey;
12 | if UCTS/fiTovrRee > UCT,,,, then

13 DPp — Djs 4
14 UCTinaq < UCTEITiTourRec,

15 Return pp; /* Return next potential POI ~ */

9 considering POI popularity, interest, visiting time, queuing time and reward.
The explore part controls the POIs that have not been selected previously, thus
ensuring the different POIs are considered in line 10. After combining exploita-
tion and exploration, we find our proposed EffiTourRec upper confidence bound
at line 11. If the upper confidence bound U CTpEjf fiTorukec jg oreater than the
previous bound, it has been stored as maximum upper bound and considered
the p, as the next selected POI in lines 12-15. Finally, the algorithm returns the
best potential next selected POI p, within all connected POIs at line 17.

6. Experiments

In this section, we present and discuss the experimental datasets, baseline algo-
rithms and evaluation metrics. For these comparisons, our proposed EffiTourRec
algorithm and the existing baseline methods are implemented in the R language.
The experiments are run on 2.50 GHz Intel Core i5 with 8GB RAM, in Windows
10.

6.1. Datasets

For our experiments, we used geo-tagged photos in five real theme parks from
August 2007 to August 2016 that was used in [36]: Disney Land, Epcot, California
Adventure, Disney Hollywood, Magic Kingdom. These datasets were collected
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Table 2. Parameters description of various theme park datasets

Theme Park # Photos POI Visits # Visitors # POIs # Visit Sequences
Disney Land (disland) 181,735 119,987 3,704 31 11,758
Epcot (epcot) 90,435 38,950 2,725 17 5,816
California Adventure (caliAdv) 193,069 57,177 2,593 25 6,907
Disney Hollywood (disHolly) 57,426 41,983 1,972 13 3,858
Magic Kingdom (MagicK) 133,221 73,994 3,342 27 8,126

in four steps: First, Flickr API ! is used to retrieve all geo-tagged photos with
visitor ID, geo-coordinates and timestamp within the theme parks. Second, each
photo geo coordinates maps to a POI coordinates if its Haversine [47] distance
is less than 100m. If there are multiple POI coordinates within 100m range,
then the photo maps to the nearest POI coordinate. Third, visit sequences are
constructed based on photos taken time of these POIs. If the time gap between
two consecutive taken photos is greater than 8 hours, it is considered as a new
visit sequence. Finally, in these visit sequences, POI popularity, visitors’ interest,
queuing time, visiting time,and traveling time are determined by the number
and timestamp of taken photos. The variation of five theme parks including the
number of POI, number of photos, number of visitors, number of POI visits and
visit sequences are shown in Table 2.

6.2. Baseline Algorithms

In the personalized itinerary recommendation system, practical constraints play
a significant role in effective and efficient tour planning. Our main baseline is
the existing work Pers@ [36] as it also considers POI popularity, visitor interest,
starting and ending POIs and time constraints including traveling, visiting and
queuing time simultaneously. Moreover, there are various state-of-art baselines
in which all these constraints are considered separately. The baseline algorithms
related to our proposed algorithm are as follows.

— Personalized Tours with Queuing Time Awareness (PersQ) [36]: Itinerary
starts at starting POI, selects potential POIs based on maximum popularity
and interest, minimizing queuing time and completes the itinerary at ending
POI within a time budget.

— Personalized Tour Recommendation (PersTour) [39]: This algorithm recom-
mends itineraries based on POI popularity and time-based visitor interest
within budget time.

— Tour Recommendation with Interest Category (TourRecInt) [35]: The algo-
rithm introduces mandatory visit POI category-based tour recommendation
system in which visitors are most interested in visit frequently visited POls
category.

— Trip Builderer Algorithm (TripBuilder) [2]: The main objective is to define
visitor interest by the spending time of visited POI of a certain category,
corresponding to his/her total visiting time.

L https://www.flickr.com/services/api/
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— Tterative Heuristic Approximation (IHA) [55]: A heuristic based recommenda-
tion system that starts with a tour staring p;, completes at p,, and repetitively
adds new POI into the itinerary until the budget time is reached.

— User Based Collaborative Filtering for Itineraries (UBCF)[53]: One of the
popular user-based collaborative filtering variations is proposed to recommend
a set of top-k POIs for another user to utilize user interest similarities.

6.3. Performance Evaluation

To evaluate the performance of our proposed EffiTourRec algorithm and existing
baseline algorithms, we consider visitors who have at least two visit sequences
and each sequence has at least three visiting POls, including starting and end-
ing POIs. Then we apply the leave-one-out evaluation [31] strategy into these
sequences where one visit sequence is used for evaluation and the other visit
sequences are used to determine visitor preferences. For each visit sequence, we
use starting and ending POlIs as input to the algorithm and the budget time is
determined by the actual time spent in the visit sequence. After that, we evaluate
the performance of our proposed algorithm against the various baselines using
the following standard metrics [36, 39].

— Precision: The ratio of POI recommended itinerary I that are present in a
visitor’s real life visit sequence. Let Pr.q; be the set of POIs in the real visit

sequence and P,.. be the set of POIs recommended in itinerary I, the tour

.. . . P, Prec
precision is defined as: Precision = | ”l"}gn I L
rec

— Recall: The proportion of POI visits in a visitor’s real-life visit sequence that

also be present in the recommended itinerary /. Using the same notation for

P,.q; and P,.., the tour recall is defined as: Recall = W.

— F1-Score: The harmonic mean of both tour recall I R; and tour precision I Py

ape . _ _ 2xIPrxIR;
of an itinerary I, defined as: F'1 — Score = TP iR

— Popularity: The average popularity of all POIs in a recommended itinerary
I, exposed as: Popularity = ﬁ ZpiEI PoP(p;).

— Interest: The average interest of all POIs in a recommended itinerary I,
exposed as: Interest = ﬁ > pier LoP(pi).

— Rank: The average rank of our proposed EffiTourRec algorithm is defined
based on popularity and interest scores ranked compare with other algorithms,

exposed as: Rank = ﬁ > p.c1 MazRange — (NO”"(P"P(W));Norm(fop(m)) %

M a:chmge) + 1, where Norm(.) is a normalization function converts score
within [0,1] and MazRange is maximum Rank value (we assume 1 = best and
12 = worst).

— Visiting Time Cost Ratio (VT CR): The ratio of visiting time of an itinerary
I, relative to itinerary total time, defined as:

_ VDoP(pi)
VICR = Zm €l,i#1 TDoP(pi—1,pi)+V DoP(pi)+Queuel,

— Queuing Time Cost Ratio (QT'C'R): The ratio of queuing time an itinerary
1, relative to itinerary total time, defined as:
Queue;i

QTCR = ZpiEI,i;él TDoP(pi,l,pi)+VDoP(pi)+Queue;i .
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— Queue Time Popularity Ratio (QTPR): The ratio of queuing time an

recommended itinerary, relative to the popularity of an itinerary I, defined as:
Queuet .

QTPR == ZP-;EI W(p’:;

— Maximum Queuing Time (MQT): The average queuing time of POIs in
itinerary I, relative to their {naximum queuing time, defined as:
MQT = (Y, 1 tramentoinr

— Execution Time: Execution time means algorithm run time to recommend
itineraries for particular datasets.

— Number of Moves: The total number of POI moves require to create itineraries
for particular datasets.

6.4. Results and Discussion

In this section, we describe our proposed EffiTourRec algorithm results compared
to the existing baseline algorithms.

6.4.1. Precision, Recall and F1-score

The main evaluation process of an itinerary recommendation method is how
well the recommended itineraries satisfy visitors’ requirements. The evaluation
metrics precision, recall and F1-scores measure how well the recommended POIs
match with real-life user preferences.

The results in Fig. 6 show the overview of the average precision, recall and
F1-score, respectively in five theme parks, for our proposed EffiTourRec and the
baseline algorithms. The results show that the proposed EffiTourRec outperforms
the six baselines in terms of precision and F1-scores. In terms of recall scores, the
proposed method outperforms all baselines except Pers(@ in California Adventure
and Magic Kingdom datasets among the five datasets. Now, we explain the
performance of our EffiTourRec algorithm and the baseline algorithms in detail.

The first column of Fig. 6 depicts the proposed EffiTourRec algorithm per-
formance on the itinerary precision score is maximum 79.10% in Hollywood and
minimum 62.90% in Disney Land dataset whereas, the best baseline algorithm
performs maximum 64.23% in Hollywood and minimum 43.31% in California
Adventure. Our proposed algorithm shows improvement results compared to the
baselines maximum 52.32% (the proposed method is 65.97% and existing PersQ
is 43.31%) in California Adventure dataset and minimum 20.89% ( EffiTourRec
method is 70.61% and existing Pers@ is 58.41%) in Epcot dataset.

The second column of Fig. 6 presents the itinerary recall score performance
analysis on our proposed EffiTourRec algorithm and baselines. The results show
that the proposed method under-performed 5.87% to 11.11% than the existing
Pers@ algorithm, whereas it outperformed than the other baselines. The main
reason for these results is that Pers@ algorithm prefers minimum visiting times
POIs. Even though these POIs may not show visitors’ interest accurately, they
create long itineraries that may be likely makes recall value high. To distin-
guish our performance analysis, we focus on Fl-score that provides a balanced
representation of itinerary precision and recall scores.

The third column of Fig. 6 illustrates the result of Fl-scores for all theme
parks and EffiTourRec out-performs all baselines from 8.36% to 21.35%. The
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Fig. 6. Comparison among proposed EffiTourRec and various baselines, in terms
of precision, recall and F1-score (1st to 3rd column) of tours recommendation for
Disney Land, Epcot, California Adventure, Hollywood and Magic Kingdom (1st
to 5th row) datasets. The x-axis of the graph shows the algorithms analyzed,
namely: EffiTourRec, PersQ, PersTour, TourRecInt, TripBuild, IHA and UBCF

(left to right).
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Table 3. Comparison between EffiTourRec and various baselines, in terms of the

mean and standard errors of Popularity and Interest whose higher values are

better, and lower values of Rank is better. In each metric, bold blue numbers

express the best result.

Datasets EffiTourRec PersQ PersTour TourRecInt TripBuilder THA UBCF
Popularity 3822464 2860440  2443+41 3263448  2040+41 1651433 2314442

z,9%\‘00b Interest 157.84£20.2 147.5 £15.9 100.9£11.1 122.8+21.1 109.8+12.5 173.2+18.6 127.3£11.3
Rank 5.65 £ 0.06 6.05+ 0.07 5.75 £ 0.09 5.76 £0.07 5.98 &+ 0.10 4.47 +0.04 5.68 + 0.05
Popularity 2376164 1927+44 1415431 1376429 1377433 1666435 1175428

@QQ& Interest 23.21+2.4 22.61£1.9 15.1+1.3 15.1£1.2 18.8+2.0 21.7+1.5 12.2£1.0
Rank 4.60 £0.11 4.89 £ 0.12 5.38 & 0.09 5.08 £+ 0.10 5.50 £ 0.10 4.69 £ 0.08 6.06 £ 0.08

“ Popularity 2834437 1603+£26 1518+41 1554443 1560£50 1446433 1416+35
&\?*b Interest 242.3+37.8 238.2+£34.1 145.0£33.2 188.3+34.1 161.9£29.9 239.2+32.7 130.5+18
& Rank 4.14 £0.09 5.71 +£0.08 5.58 £+ 0.08 5.3 = 0.08 5.56 £ 0.13 4.19 £ 0.06 5.84 £ 0.07
& Popularity 3142+74 2480+54 1990+51 2016152 1803+54 2976+44 173747

& © Interest 15.6+1.3 16.2+1.4 12.0£1.2 12.44+1.2 11.9+1.1 16.1+1.4 11.4+1.1
Rank 3.61+0.13 4.33 £ 0.14 4.73 & 0.10 4.33 £ 0.12 4.53 £ 0.10 3.65 £ 0.08 4.98 £ 0.09

& Popularity 3724478 1960£35 176779 1629+70 1591468 2125126 1616+36
@,vo:o‘o Interest 31.16+2.7 30.41+2.3 18.4+04 182 £2.6 26.2+2.4 27.6+2.4 14.2+0.9

Rank 4.27 £0.09 5.70 £ 0.09 5.84 £ 0.12 5.91 £ 0.15 6.09 £ 0.14 4.36 £ 0.06 6.07 £ 0.06

results show that the proposed method under-performs on tour recall scores
but out-performs on Fl-score scores. The results improve performance mini-
mum 8.36% in Epcot dataset (proposed EffiTourRec method is 60.90% and best
existing Pers@ is 56.2%) to maximum 21.35% in Disney Hollywood dataset
(proposed EffiTourRec and best existing Pers@ are 55.70% and 45.86%, respec-
tively). These results prove that the recommended itineraries of our proposed
EffiTourRec algorithm are highly significant to the real-life visitors than the
other baselines.

6.4.2. Popularity, Interest and Rank of POI

The evaluation metrics’ popularity and interest reflect how well the visitors like
these recommended POIs and how well the category of recommended POIs match
with real-life visited POIs category, respectively. The results in Table 3 show that
the maximum average popularity of POI of our proposed EffiTourRec method is
3822 in Disney Land dataset, whereas the existing best Pers@ method is 2860.
On the other hand, the minimum average popularity of the proposed method is
2376 in Epcot dataset, which is also best among all baseline algorithms. The re-
sults show that our proposed algorithm recommends the most popular POI for all
theme parks datasets compared to the baselines, while Pers@ offers the second-
best performance. It shows that our proposed EffiTourRec creates itineraries
based on POIs that are 23.30% to 81.17% more popular than the existing base-
lines.

Table 3 illustrates proposed EffiTourRec method recommends the highest
interest scores for three datasets among the five theme parks while Pers@ and
ITHA algorithms lead POI interest for one theme park.

Besides these, ranking expresses the user’s interest and POI popularity values
as a function to show the POIs ranks. We can see that our proposed method’s
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average POIls rank value is best compared to the other baselines. We consider an
effective heuristic to maximize popularity, user interest, and visiting time, along
with minimizing queuing time. In this evaluation, we consider rank value from 1
to 12, and the smallest rank value expresses the better result.

6.4.3. Visiting, Travel and Queuing Time Metrics

Time constraints are important parameters for an itinerary recommendation
because every visitor has specific time limits. Thus, the recommended itinerary
should be more effective in which the visitor gets maximum visiting time to visit
POIs rather than traveling and queuing time to access that POIL. These time
metrics indicate the effectiveness of visitor spending time.

Visiting time cost ratio (VTCR) represents the proportion of POI visiting
time compared to the total spending time of visitors. Table 4 shows the com-
parison of VTCR for the five datasets among our proposed method and existing
six baseline methods. All results show that our proposed EffiTourRec algorithm
outperforms the baselines with an increment of 6.69% to 44.93% in VT'CR. The
main reason for these performances is that our proposed potential POI selection
focuses on visiting time as a proportion factor to show the visitor preferences.

Travel time cost ratio (TTCR) means the part of the traveling time from
one POI to another POI with the total spending time of visitors to complete
their itineraries. Most of the datasets travel time cost ratio is 5-7% as traveling
time makes up a small part of the itinerary in this theme park context. Thus, as
the results for the baselines and EffiTourRec are almost similar and we do not
present this in the table.

The queuing time cost ratio (QTCR) in Table 4 presents visitors waiting
time ratio with total expending time. More QTCR means the recommended
itinerary spends more time as waiting time than the visitor preferences POI
visiting time. The table clearly shows that queuing time is an important factor
in visitors’ theme park travel because it requires more than 58% budget time
for all datasets. Thus, less value of QTCR elicits the visitors spend less time
as waiting time. Therefore, it points out that the proposed method EffiTourRec
outperforms all baselines with a reduction of queuing time. Table 4 depicts the
queue time popularity ratio (QTPR) of itineraries. We know that long queuing
time makes visitors disappointed, which means the small value of the queuing
time popularity ratio indicates visitor preferences. The results show that the
proposed method outperforms QTPR than the existing baseline algorithms in
the five datasets, reducing 6.97% to 23.56%. The maximum queuing time (MQT)
conveys the queuing time association of each POl in an itinerary. The larger value
represents that the recommended POI is more similar to queuing time than the
less valued queuing time. It shows that our proposed method outperforms all
baseline algorithms except the disland dataset, where UBCF performs well than
the proposed method.

In the above analysis, we see that our proposed EffiTourRec method outper-
forms 37 evaluation values for different datasets, whereas existing Pers@) out-
performs 6 values and THA and UBCF outperform one evaluation value. Thus,
it is clear that the superior performance of EffiTourRec is due to its effective
itinerary creation approach using POI popularity, user interest, queuing and vis-
iting times.
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Table 4: Comparison between EffiTourRec and various baselines, in terms of Visiting time cost ratio (VTCR), Queuing time cost
ratio (QTCR), Queuing time popularity ratio (QTPR) and Maximum Queuing time (MQT). Higher value of VTCR is better,
while lower values of QTCR, QTPR and MQT are preferred. In each metric, bold blue numbers express the best result.

EffiTourRec PersQ PersTour TourRecInt  TripBuilder THA UBCF
VTCR  0.180+0.002 0.12940.002  0.118£0.003  0.120+0.002  0.123£0.003  0.07+0.001 0.11+0.002
M QTCR 0.765+0.003 0.809£0.003  0.849£0.004 0.853+£0.003  0.847+0.004  0.8940.002 0.83+0.003
£  QTPR 0.76040.012 0.91+ 0.02 1.4240.05 1.08+0.004 1.19+0.03 1.7140.03 1.3240.04
MQT 0.15440.002 0.1214+0.002  0.172+0.005 0.1524+0.006  0.1524+0.005 0.151 +0.002 0.118+0.002
VTCR  0.328+0.008  0.26440.006 0.18+0.004 0.18+£0.004  0.19540.005 0.13+0.003 0.21+0.005
m QTCR  0.586+0.009 0.636+0.007  0.7740.004 0.77+0.004 0.76+0.005 0.80+0.003 0.71+0.005
a) QTPR  0.893+0.02 0.96+0.025 1.684+0.042 1.74+40.044 1.7440.051 1.4740.03 2.25+0.09
MQT 0.121+0.004  0.125+0.004  0.1834+0.004 0.181+£0.004 0.175+0.004 0.195 £0.003  0.158+0.004
VTCR  0.30+0.006 0.207£0.004  0.1274£0.004 0.126+£0.004  0.138+0.005 0.08+0.002 0.13+0.003
Mw QTCR  0.631+0.008 0.682+0.005  0.829+0.006  0.82940.005 0.8094+0.006  0.85+0.004 0.79+0.005
E QTPR  0.623+0.03 0.81540.02 1.86+0.04 1.334+0.06 1.49+ 0.07 2.02+0.16 1.88+0.09
MQT 0.096+0.003 0.097 £0.002  0.1434+0.008 0.146+£0.005  0.143+0.004  0.159+0.003 0.139£0.003
VTCR  0.255+0.007  0.239+0.006 0.20+0.005 0.2040.005 0.20+0.004  0.114£0.004 0.194+0.005
HW QTCR  0.693+0.007 0.696+0.006  0.769+£0.006  0.77+0.005  0.768+0.005  0.849+0.004 0.754+0.006
M QTPR 0.769+0.04 0.915+0.05 1.9940.13 1.961+0.12 2.2240.14 0.9840.03 2.01£0.09
MQT 0.143+0.004 0.150£0.004  0.18+0.005 0.1840.005 0.18+0.005 0.208+0.005 0.20+0.006
VTCR  0.254+0.004  0.199+0.003  0.126+£0.003  0.123+0.003  0.1554+0.006  0.07+0.002 0.160.003
ﬂ QTCR  0.676+0.004 0.70+0.004 0.84240.004 0.834£0.006  0.802+0.005 0.87+0.002 0.77+0.004
W% QTPR  0.669+0.02 0.83+0.02 1.59+0.03 1.47 +0.04 1.42+0.06 1.1440.03 1.58+0.04
MQT 0.111+0.003 0.1240.002 0.18+0.006  0.1734+0.004  0.1484+0.005 0.198 +£0.003  0.161+0.003
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Table 5. Execution time (Minutes) of each successful itinerary comparison among
the proposed EffiTourRec and existing algorithms of various datasets. The bold
blue numbers express the best result.

Datasets  EffiTourRec  PersQQ  PersTour TourRecInt TripBuilder Efficiency

disland 0.34 0.69 4.2 5.06 5.74 50.72%
Epcot 0.21 0.35 1.57 1.59 1.87 40.00%
caliAdv 0.26 0.64 3.6 3.8 4.01 59.39%
disHolly 0.16 0.31 0.74 0.88 1.02 48.39%
MagicK 0.22 0.68 8.95 6.93 5.63 67.64%

6.4.4. Runtime Analysis between Existing Methods and EffiTourRec

Previously, we have shown the effectiveness of our method. This part analyzes
why our method run time is faster than the baselines. The result on Table 5 shows
that the proposed algorithm EffiTourRec finds recommended itineraries from
theme park datasets more efficiently than the existing baselines. The existing
IHA and UBCF algorithm recommend top-k POIs based on heuristic and they
do not make these POIs as an itinerary recommendation nor they consider the
various practical spatial and temporal constraints which are associated with
the itinerary plan. Thus, in this itinerary planning, we do not consider these
two algorithms (IHA and UBCF') time complexity analysis. We consider time
comparison among our proposed algorithm and other baseline algorithms that
recommend itinerary paths. We have used adaptive Monte Carlo Tree Search
with effective heuristics to select potential next POI for creating itinerary paths
in our proposed method. We also used MCTS search pruning that avoids non-
optimal and duplicate itineraries generation. Thus, the time efficiency of the
proposed EffiTourRec algorithm is the best among all baseline algorithms for all
datasets. We set maxLoop = 1000 as the value allows the algorithms to complete
itinerary in a reasonable time.

The results show that the run time of algorithms to find a successful itinerary
changes with the number of sequences and number of POIs. The run time is pro-
portional to the number of sequences and the number of POIs. Table 5 shows
that the average itinerary constructing time of the proposed method is only
0.16 minutes at Hollywood dataset that consists of 13 POIs. The execution time
depends on number of POIs and number of sequences in each dataset. The run-
time of different datasets shows that the proposed EffiTourRec algorithm finds
personalized recommended itineraries more efficiently than the existing baseline
algorithms. We can see the ratio(%) efficiency values with the best existing algo-
rithm and our proposed EffiTourRec algorithm in the last column of Table 5. It
is clear that the proposed algorithm is a minimum 40.00 % faster than the bests
existing baselines in Epcot dataset and maximum 67.64% faster in Magic King-
dom dataset. All other baselines are more time-consuming than the proposed
method.
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Table 6. Number of moves comparison of proposed EffiTourRec and existing
Pers(@ algorithm of various datasets

Algorithms disland Epcot caliAdv disHolly MagicK
Pers@ 6087171 2069796 4838537 1334913 5165181
EffiTourRec 3492072 997044 1795576 638150 2068937

Moves Reduce 42.63% 51.83% 62.89% 52.19% 59.77%
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Fig. 7. Effects of MazLoop threshold value in Disney Hollywood dataset.

6.4.5. Number of Moves Analysis between EffiTourRec and Existing
Method

Number of moves indicates the efficiency of the algorithms. If number of moves
is less number that means it requires less time to generate an itinerary to the
visitor. The number of potential POI moves of proposed EffiTourRec and ex-
isting Pers(@ algorithms are viewed in Table 6 for five datasets. All the values
show that our proposed algorithm requires fewer number moves than the exist-
ing algorithm. The last row of the table 6 depicts the number of moves reduce
ratio in percentage. We can see that our proposed algorithm efficiently prunes
unnecessary moves using pruning rules and makes our model time efficient. It
shows that compared to Pers@ algorithm, our proposed method is able to reduce
the number of moves by 42.63% to 62.89% in various datasets.

6.4.6. Effectiveness and Efficiency Analysis based on MaxLoop

In this work, the execution time and other evaluation metric values change with
MazLoop values change, which is significant for our proposed EffiTourRec and
existing Pers@) algorithms. These two algorithms used adaptive Monte Carlo
Tree Search considering MazLoop, whereas other baseline algorithms are maxi-
mum loop-free. The effects of the maximum loop iteration threshold on F1-score,
execution time and the number of moves of our proposed method and existing
method are shown in Fig. 7. In this research paper, we have two-fold contribu-
tions: effective heuristic and efficient pruning technique. To show the impact of
heuristic and pruning technique, we have used two different approaches that are
EffiTourRec: without Pruning and EffiTourRec: with Pruning. The results shows
that EffiTourRec:without Pruning method is effective and efficient than the ex-
isting Pers@ method. On the other hand, EffiTourRec: with Pruning technique
is the most effective than the without pruning technique and existing Pers@)
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algorithm. Although all datasets show the same result trends, Fig. 7 shows Dis-
ney Hollywood dataset results. First, second and third figure in Fig 7 depicts
F1-score, the execution time of a successful itinerary and the total number of
moves, respectively.

6.5. Discussion

The vast application of personalized itinerary recommendation system increases
due to the importance of tour planning researches in real life theme parks tours or
unknown city tours. The proposed EffiTourRec algorithm outperforms because
of its effective heuristic and efficient pruning technique. In the proposed heuristic,
we focus on POI popularity, user’s interest, travel time, visiting time, and queuing
time which are essential fundamental factors. Previous studies were concerned
about the shortest visiting time POI visit priority, but they did not notice each
POI queuing time relatively high. That is why the queuing time ratio increases
instead of the POI visiting time ratio, which makes visitors bored. On the other
hand, the user’s interest measurement depends not only on the number of POI
visits and the taken photos but also on spending time on that particular POI.
Existing models did not consider spending time impact to measure users interest.
These two issues make our algorithm more effective than the baselines. Moreover,
we use the pruning technique, which avoids low rewarded POI path exploration
and avoids repeated exploration in the early stage. This technique saves a huge
number of moves and time. Table 5 and 6 show the time and move efficiency,
respectively.

These results present the best performance of our proposed EffiTourRec al-
gorithm over the baseline algorithms. The baseline algorithms were included to
depict only effectiveness based on evaluation metrics, which did not consider
the efficiency measurement of these algorithms. To compare the time efficiency
of our proposed algorithm and existing baseline algorithms, we show that our
proposed algorithm is at least fifty percent faster than the baseline algorithms.
Moreover, the proposed algorithm is able to reduce around fifty percent of POI
moves because of its efficient pruning technique. However, our proposed method
is able to consistently recommend itineraries that consist of higher precision, re-
call, F'1-score and visiting time, and lower queuing time. Moreover, the itineraries
recommended by the EffiTourRec algorithm utilize the visiting time more effi-
ciently than the existing baselines.

7. Conclusion and Future Work

In this work, our main goal is to propose an effective and efficient itinerary rec-
ommendation that users get the maximum reward within budget time. We have
designed a new algorithm EffiTourRec to recommend personalized itineraries
based on adaptive Monte Carlo Tree Search using effective heuristic and efficient
pruning techniques. Our proposed EffiTourRec shows that visitors’ preferences
proportion to prior visit time along with POI popularity and visitor interest. We
evaluate experimental results on five theme park real datasets and show that
proposed algorithm outperforms the state of the art in terms of tour precision,
recall, Fl-score, visiting time, queuing time, POI popularity and visitor inter-
est alignment of POI visits. It also shows that proposed method is 40.00% to
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67.64% faster than the existing baselines and prunes 42.63% to 62.89% moves
than the existing algorithm. To our knowledge, it is the first work in personal-
ized itineraries recommendation that considered both effectiveness and efficiency
evaluation metrics simultaneously.

In our future work, we will consider dynamic queuing time managements and
queuing capacity in each POI, instead of static queuing time management. We
also intend to address a visitor’s dynamic sentiment and activity-based interests
for personalized tour recommendations.
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