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Abstract

Point of Interest (POI) recommendations have primarily focused on maximizing user satis-

faction, while neglecting the needs of POIs and their operators. One such need is recom-

mendation exposure, which can lead to envy among the POIs. Some POIs may be under-

recommended, while others may be over-recommended, resulting in dissatisfaction for both

staff and users due to long queues or overcrowding. Existing work has not addressed the

trade-off between satisfying user preferences and being fair to POIs, which typically aim to

operate at capacity. Therefore, we introduce the POI fair allocation problem to model this

issue, taking into account both user satisfaction and POI exposure fairness. To address this

problem, we propose a fair POI allocation technique that balances user satisfaction and POI

capacity-based exposure simultaneously. Our proposed model utilizes existing (transformer

neural networks and attention LSTM model) personalized POI recommendation models that

capture users’ spatio-temporal influences and interests in POI visits. We then propose POI

capacity-based allocation using the over-demand cut policy and under-demand add policy,

which ensures POI exposure ratio and envy-freeness up to certain thresholds. We evaluate

the performance of our proposed model on five datasets containing real-life POI visits. Ex-

perimental evaluations show that our proposed model outperforms baselines in terms of user

and POI-based evaluation metrics. To ensure reproducibility, we have publicly shared our

source code at Codeocean.
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1. Introduction

Point of Interest (POI) recommendation is of great importance due to its numerous

applications in resource allocation, tourism, trip recommendation and event management

[1]. Diversity and item exposure in recommender systems attract research attention due to

several motivations. Firstly, a good recommendation system should not only provide per-

sonalized recommendations but also offer a diverse set of items that cater to users’ interests

and preferences. This ensures that users are presented with a range of enjoyable options,

sweetening their overall experience. Secondly, it is essential for the recommendation system

to maintain the long-term sustainability of providers. This involves mitigating the ”rich get

richer” phenomenon, where a few popular items dominate the recommendations, potentially

excluding lesser-known but equally valuable options. Balancing the exposure of users’ dis-

tribution is essential for fairness and promoting a vibrant ecosystem of POIs. Moreover,

POI recommendation faces additional challenges related to allocation diversity and capacity

limitations. Unlike traditional item recommendation scenarios, POIs are not infinitely avail-

able. There are restrictions on the number of people that can visit a particular attraction or

participate in an event. Thus, recommendations must consider the capacity limitations of

POIs to avoid suggesting options that are already at full capacity, ensuring a seamless user

experience. To the best of our knowledge, this paper is the first to study these issues in the

context of POI recommendations. By exploring capacity-aware fair POI recommendation,

we aim to develop novel techniques that tackle the challenges of diversity, item exposure,

and capacity constraints, thereby advancing the field and contributing to more effective and

fair recommendation systems.

POI recommendation is challenging due to the need to satisfy two competing aspects

of the problem, which are to maximise user personalised interests and viable POI visiter

numbers concurrently. However, most studies are focused on maximising user personalised

interest [2, 3, 4] and neglect POIs exposure. These prior studies focus on the personalised
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recommendation aspect and only consider user satisfaction to recommend top-k POIs that

achieve high customer utility. The POI exposure aspect is neglected, which may result in a

large number of users being recommended the same POI. In turn, that may create a long

queue due to capacity limits and users may become frustrated. Our observation of real–world

dataset shows a huge disparity in the exposure of the POIs, which is unfair to the POIs.

Because it increases the risk of presenting a biased or homogeneous set of recommendations,

which can lead to a narrow view of the available options to the users. Furthermore, low user

demands will cause POIs to face exposure problems and be unable to operate for the long

term, causing users to lose the opportunity to enjoy diverse POIs. These challenges motivate

us to build a fair POI recommendation that users get satisfaction and POIs get a reasonable

number of visitors in a real-world environment.

Figure 1: Necessity of fair POI recommendation.

Figure 1 shows the necessity of fair POIs recommendation. Users U1, U2 and U3 visits

POIs P1 to P7 at different time stamps T1 to T5 in Figure 1(a). The first three timestamps

T1 to T3 are used as input sequence and the next two time stamps POIs are recommended,

illustrated in Figure 1(b). Existing models focus on user personalised interest and recommend

POI P6 to all users at time stamps T4. This recommendation creates two problems: (i) POI
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P6 has a capacity limit of 2, which does not allow all users to visit at a time, and (ii) some

POIs struggle to find users in Figure 1(c). Thus, one model is necessary which can consider

user interest and simultaneously consider POIs visit levels. Only user preference-based POI

recommendations may create biased POI allocation.

To recommend POIs, different deep neural models have been proposed that consider

spatio-temporal information and user preferences [2, 3, 4, 5]. Recently, FairRec [6] and

FairRecPlus [7] focused on the two-sided satisfaction of both users and e-commerce item

recommendation in which the number of recommended items is envy-free up to one item

(EF1). EF1 goal is to divide a set of resources among multiple individuals in a way that

no individual envies another’s share, but only up to one item. We can not apply existing

EF1 allocation in POI recommendations because POIs have different capacity limits. Thus,

our definition of envy-free depends on POI demand ratio with capacity, in which higher

capacity-based providers should get more visitors than the lower capacity-based providers.

Our proposed capacity-based envy-free allocation has a few advantages. First, providers get

visit levels based on invested assets that are more realistic than all providers getting the

same visit level. If all providers get the same number of visitors, the providers of higher

amount investing could not get enough visitors, whereas providers of small amount investing

will get many visitors considering their capital. In that case, the high amount of investing

providers group will suffer because they could not receive enough consumers based on their

expectations. Second, the capacity ratio-based envy-free model reduces higher and lower

amounts of investing group envy because each group will get a number of users based on

the number of their investing resources. Third, capacity ratio–based allocation prevents

over–demand problems in which a few popular items may concentrate all users’ interest.

Capacity-based envy-free allocation is a resource allocation method that takes into ac-

count the capacities or capacities of individuals to receive or utilize resources. This method

differs from traditional envy-free allocation, where resources are simply divided equally

among individuals, regardless of their capacities. In capacity-based envy-free allocation,

individuals with higher capacities receive more resources, while those with lower capacities
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receive fewer resources, but still in proportion to their capacities. General room allocation

problems [8, 9] solve over–demand problems based on capacity diversity and budget con-

straints. Therefore, we can not apply the existing model because it is an NP-hard problem

and solve a maximum four beds capacity-based room sharing problem. The existing room

allocation model’s computational complexity increases exponentially with the room capacity.

Besides this, POIs visit levels are more diverse than the room-sharing problems. FairRec

[6] and FairRecPlus [7] proposed fair items recommendation that each item gets envy-free

allocation up to one item. FairRec model allocates items equally, which does not perform

well in the POI recommendation because POIs have different capacities. Therefore, in POI

recommendation, if we use constant capacity proportion–based allocation, we will lose user

preferences. Moreover, if we apply greedy approach to distribute the users among the POIs,

POIs will lose their popularity because that case POIs will get same portion of users based

on their capacity.

With the above motivations, this research first introduces a fair POI recommendation to

leverage user dynamic interests and POIs satisfaction in filling their capacity to a sufficient

level. Here, we do not apply constant capacity–aware envy–free allocation to solve the POIs

popularity reduction problem. We consider the existing models [2, 4, 10] that can capture

user dynamic preferences. To capture fair POIs satisfaction, we consider capacity-based

POI over–demand (allocations greater than the capacity) and under–demand (allocations

tiny than the capacity) and solve the recommendation imbalance problem among the POIs.

Finally, we focus on maximising user preferences and fair allocation among POIs. Therefore,

this research’s main objective is to select POIs that users get appropriate satisfaction and

POIs get sufficient user allocation.

The contributions of this study can be summarised as follows:

• In this research work, we propose capacity-aware fair POI recommendation to solve

users allocation in POI recommendation using deep learning model and allocation

strategy in which users get maximum satisfaction and POIs get appropriate allocations.

We study that users’ equal distribution is not a good approach for POI recommendation
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due to its resources difference and constraints.

• Our proposed model capture users’ spatiotemproal influence to calculate users’ interest

and capacity-based user allocation ensures that all POI providers get sufficient users

to operate services in the long run.

• The model simultaneously learns user satisfaction and balances POIs exposure to solve

recommendation and fairness problems in one framework.

• We conduct experimental analysis using five real datasets and show our proposed model

superiority over the baselines regarding user and POI side evaluation metrics.

The remaining sections of this paper are organized as follows. The review of related works

is described in Section 2. Problem statement with some preliminaries is introduced in Section

3. In Section 4, we present our capacity–aware fair POI recommendation model. After that,

we analyze experiment results using five datasets in Section 5. Finally, we conclude the

proposed model with future research direction in Section 6.

2. Related Work

Personalised and fair recommendations are two areas that are highly relevant to our

proposed problem and model. We discuss key literature from these two areas in the following

sections.

2.1. Personalised Next Top-K POI Recommendations

The effectiveness of POI recommendation is associated with POI geographical locations,

users visiting time, and user’s interest [3, 11, 12, 13, 14]. These models consider users who

have visited similar set of locations as having similar preferences. POIs and users’ latent

features are used to predict user preferences for unvisited locations, which improves rec-

ommendation performance [15, 16]. Previous studies also considered spatial and temporal

correlations [17, 18]. Besides these, in the attention-based spatiotemporal influence ATST-

LSTM [2] model, an attention memory network [19] and self-attention [5] were proposed for
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time-aware POI recommendation. People’s behavior is influenced by the geography of the lo-

cation which means people are more likely to visit nearby locations than distant ones. Guo

et al. [20] proposed location perspective-based neighborhood-aware POI recommendation

instead of users perspective POI recommendation. Check-in sequence and contents of POIs

are used in CAPE [21] model. Feng et al. [22] proposed a non-Euclidean embedding model

capturing user preference, region and category for the next-POI recommendation. Wu et al.

[23] introduced personalized next POI recommendation using long-and short-term prefer-

ences. Li et al. [24] proposed a deep neural network for crossing-town POI recommendation.

Different category–based POI recommendation has been applied in [25]. Moreover, CNN and

multi-layer preceptors to POI recommendation have been employed in [26, 27]. Nowadays,

attention-based transformers have shown significant improvement in capturing all dependen-

cies at once using a non-recurrent encoder-decoder model for POI recommendation [4, 10].

Pang et al. [28] introduced a hierarchical attention mechanism for POI recommendation.

Shi et al. [19] applied memory network and correlation-based embedding for time-aware POI

recommendation. A sustainable tourist trip recommendation for groups of users has been

addressed using a multi-objective approach in [29]. Qi et al. [30] introduced a group-based

POI category recommendation model for LBSNs by addressing the challenges of sparse user

preferences. It incorporates group influence, LSTM with attention mechanism, and utilizes

POI categories to efficiently capture long-term dependencies and user interests. Liu et al.

[31] proposed an interaction-enhanced and time-aware graph convolution network, for suc-

cessive point-of-interest (POI) recommendations in location-based social networks. However,

these models do not focus on both sides of the recommendation, i.e., the user’s perspective

and the location perspective.

2.2. Fair Recommendations

Fair recommendation involves a multi-sided consideration such that all platforms are fair

and unbiased. For example, Hannak et al. [32] investigated the biases of race and gender

in freelance marketplaces. Hort et al. [33] introduced semantically correct word embedding

for reducing gender bias. It has been shown that popular POIs often acquire most of the
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follower’s visibility where new, but good ones are often starved for follower visibility [34].

In our daily life, recommendation platforms often involve multiple stakeholders [35]. Serbos

et al. [36] proposed customers individual fairness-based group tour recommendations on

travel booking sites. Recent research shows that multiple issues of unfairness and biases

have happened on different platforms [37, 38, 39]. Suhr et al. [40] and Chakraborty et al.

[41] introduced models for two-sided fairness combination problem. Patro et al. [6] pro-

posed FairRec model that mapped product fair recommendation problem to a fair allocation

problem to the POIs and customers. FairRecPlus [7] improves the FairRec model user satis-

faction by using envy-free cycles. Chen et al. [9] proposed a room allocation model in which

precisely two persons are assigned in each room. Li et al. [8] introduced a room allocation

model considering various room capacity and budget constraints, which maximise social wel-

fare. Therefore, our model differs from the existing models due to users’ spatio-temporal

dependencies, POIs capacity limits and personalisation.

2.3. Differences from existing studies

Our proposed capacity-aware fair POI recommendation model differs from these earlier

works. Prior studies show the top-k POI recommendations only consider user preferences

where POI fairness was ignored. This research first introduces fair user allocation among the

POIs based on capacity level, unlike E-commerce item recommendation and room allocation.

Second, we simultaneously apply personalised user interest and POIs fairness to maximise

user satisfaction and minimize POIs bias problems, whereas existing models are either user-

centric or POI-centric. Last but not least, our proposed model generates a fair top-k POIs

list that addresses the recommendation and allocation problems in one framework, whereas

earlier works consider only one among them. Table 1 describes the main differences between

the proposed model and earlier works.

3. Preliminaries and Problem Statement

This section describes the necessary definitions and problem formulation of capacity-

aware recommendations.
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Table 1: Comparison among proposed model and baselines.

Models Users Producer/POI Technique Recommen- Alloca-
Interest Exposure dation tion

ATST-LSTM [2] 3 Attention + LSTM 3

TLR-M [4] 3 Transformer 3

TLR-M UI [10] 3 Transformer + POI Description 3

TOPK 3 TOPK Interest 3

LOWK 3 LOW-K Interest 3

Random 3 Random Allocations 3

FairRec [6] 3 3 Greedy Algorithm 3 3

FairRecPlus [7] 3 3 Greedy + Cycle Free 3 3

CAFPR (Proposed) 3 3 Demand Policy 3 3

3.1. Preliminaries and Necessary Definitions

Definition 1. Point of Interest (POI): A POI is a place, typically in a city or theme park,

where people find it interesting to visit, e.g., a roller coaster ride, a church or a museum. A

set of POI is defined by P = {p1, p2, · · · , pn}, where each POI pi ∈ P has position coordinates,

category, and openning times.

Definition 2. Capacity of POI: Let pi ∈ P be a POI. The capacity of pi is the maximum

number of users who can visit pi at any timestep t ∈ T , where T is a total ordinal set of

timestamps.

The capacity may not be available and can be estimated as follows:

Cap(pi) = max
(∑
u∈U

δ(u, pi, tk)
)

(1)

where δ(u, pi, tk) = 1 if user u stays (not just arriving/entering) at POI pi at time tk,

otherwise δ(u, pi, tk) = 0.

Definition 3. Demand of POI: Let pi ∈ P be a POI, the demand of pi is the number of

users who want to visit pi at time t ∈ T and it is defined as:

Dem(pi, t) =
∑
u∈U

γ(u, pi, t) (2)
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where, γ(u, pi, t) = 1 if the user u want to visit pi at times t, otherwise γ(u, pi, t) = 0. Here

U is the set of all users.

We define the demands of POIs as three types: over-demand, under-demand and exact

demand. They are defined in terms of visitor demand and POI capacity as follows:

Definition 4. Over, Under and Exact Demand: The demand of a POI relative to the POI

capacity is defined as follows:

M(pi) = Dem(pi, t)− Cap(pi) (3)

where, M(pi) is net demand of pi. If M(pi) > 0, then it is over demand, M(pi) < 0 is under

demand and M(pi) = 0 is exact demand.

Definition 5. Visit Level: It represents the number of users who visit the particular POI pi

at a particular time t.

User interest in the POI depends on the POI category [16, 10], user–to–POI distance

and time [2]. Preferences may also change based on time [4, 42]. Our model can utilise any

interest function that computes a relevance score for a user–POI–time triple. Therefore, the

user satisfaction of a POI depends on multiple complex factors, which can be defined as

follows:

Definition 6. User Satisfaction to POI: The satisfaction of user uj at time t for POI pi is

denoted by Suj
(pi, t) ∈ [0, 1], the preference score of POI.

Allocation refers to the distribution of resources, such as goods or tasks, among a group

of individuals. In the context of resource allocation, the concept of envy-freeness is often

discussed. Envy-freeness means that no one in the group envies the resources of others. Envy-

freeness is considered a desirable property in resource allocation because it ensures fairness

and equitable distribution of resources. Achieving envy-freeness can be a challenging task,

especially when resources have different values for different individuals and when the number
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of resources is limited. However, finding an envy-free allocation is possible in some cases,

such as when resources can be divided into equal portions.

In POI recommendation, users visit a POI for a period of time, depending on their

interest in the POI and other factors (e.g., time budget). This POI allocation should be a

fair allocation; otherwise, some POI will experience over-demand, while others will face the

under-demand problem. The POI allocation should be envy–free as much as possible. An

envy-free user allocation is an allocation of users among the POIs in which no POI provider

will envy the other POI providers. Existing room allocation [9, 8] or item allocation [6]

processes are not suitable for envy-free POI allocations, as the room capacity is limited

(maximum of four occupants), whereas POI capacity is up to the hundreds. Furthermore,

room and item allocation preference does not change based on time and spatial distance,

whereas POI allocation demand depends on these variables. Finally, POI capacities vary

from one POI to another; we cannot consider fixed user number differences based on envy-

free allocation, e.g., EF1 (envy free up to one item) or EFN (envy–free up to N items). To

address these limitations, we need a capacity–based envy–free allocation approach in which

POI exposure utilisation depends on user demand and POI capacity ratio.

Capacity-based envy-free POI allocation is an allocation method that considers POIs ca-

pacities to distribute users. This method varies from other traditional envy-free allocations,

where resources are simply divided equally among individuals, regardless of their capaci-

ties. If we use constant capacity proportion-based allocation, we will miss input from users’

preferences and some POI will lose their popularity. To make a balance between user prefer-

ences and capacity–based free allocation we defined our capacity–based envy-free allocation

as follows:

Definition 7. Capacity-based Envy–free Allocation: A pair of POIs allocated among the

users will be envy-free if each POI gets a minimum portion (mindem) of users based on their

capacity and the differences of demand portion for each POI in the pair will be less than the

user–defined threshold value (Envycap).

The demand ratio of POIs based on capacity is greater than or equal to the threshold
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value mindem, and the allocation difference between a pair of POIs is smaller than the

Envycap value. Two POIs pi and ph allocations are capacity–aware envy–free allocations if

it follows both constraints at time t as follows.

• Dem(pi,t)
Cap(pi)

≥ mindem and Dem(ph,t)
Cap(ph)

≥ mindem,

• |Dem(pi,t)
Cap(pi)

- Dem(ph,t)
Cap(ph)

| < Envycap.

Definition 8. Envy-free: Two POIs pi and ph will be envy-free at time t if these two POIs

get sufficient POI exposure (based on mindem) and their capacity-based exposure ratio is

smaller than the Envycap threshold.

Figure 2 presents an example involving three POIs, where the capacity of p1 is 10 and

the demand represented by Dem(p1, t) is 8. Similarly, the capacity of POIs p2 and p3 are 6

and 8 and the demands are 2 and 4, respectively. We assume Envycap = 0.4 and mindem =

0.5. Thus, according to Definition 3.1, p1 and p2 are not envy-free; for the other pairs, the

(p1, p3) ratio difference is 0.3. The (p2, p3) ratio difference is 0.17, and both are envy-free.

Figure 2: Capacity–based envy–free allocation.

3.2. Problem Statement

Capacity–aware Fair POI Recommendation: Consider a user set U = { u1, u2,
· · · , um }, POI set P = { p1, p2, · · · , pn }, timestamp set T = {t1, t2, · · · , tl } and POI
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capacity set C = { Cap(p1), Cap(p2), · · · , Cap(pn) }. The goal of fair POI recommendation

is to recommend k POIs such that users will receive maximum satisfaction, while the POIs

will be envy–free and receive capacity–aware fair POI recommendation. This means that our

proposed model maximises user satisfaction based on user preferences and also maximises

envy–free POI pair allocations based on fair allocation policy.

Figure 3 illustrates the two objectives: maximising user satisfaction and maximising

envy–free POI pairs. At each time t, attempts are made to allocate many users to a POI,

resulting in many-to-one mapping. Let Xi,j,t indicate that user ui is allocated to POI pj at

time t, where Xi,j,t ∈ {0, 1}. Thus, the user objective is as follows:

max
Xi,j,t

∑
t

∑
pj

∑
ui

(
Xi,j,tSui

(pj, t)
↓

User Satisfaction

)
(4)

where Sui
(pj, t) represents the user ui satisfaction score with POI pj at time t. A user can

only visit / be allocated to one location at a time; hence, we have the constraint
∑

j xi,j,t =

1,∀i, t. Alternatively, if users do not have to be allocated at a POI across all times, we have∑
j xi,j,t ≤ 1,∀i, t.

Figure 3: Objectives of fair POI recommendation model.

Here, we assume that users can transit from one POI to another POI based on their user

preferences. However, our proposed model is also able to incorporate travel costs between

POIs and user interests. Moreover, a user will not change their POI allocation unless their
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satisfaction function changes with time. The POI objective is as follows:

max
∑
t

∑
pj ,pk∈P,pl 6=pk

(
Envy Free(pj, pk, t)

↓
POIs Envy

)
(5)

where, Envy Free(pj, pk, t) = 1 if POI pair pj and pk are envy–free at time t; otherwise,

Envy Free (pj, pk, t) = 0. Here, Envy Free (pj, pk, t) depends on the user allocation be-

tween the POIs pj and pk. These two objectives ensure user satisfaction and minimum envy

among the POIs, respectively. Notably, optimising these objectives is challenging because

the two aims may conflict with each other.

Figure 4: Proposed capacity-aware fair POI recommendation (CAFPR) model.

4. Proposed Model

Figure 4 illustrates our proposed model that trades off between user satisfaction and fair

POI recommendations. The recommendation model recommends a set of POIs to the users,

whereas the allocation policy selects the best POIs in which POIs get sufficient visit levels.
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The recommendation part of the proposed model captures user dynamic behaviours and spa-

tiotemporal periodic dependencies. The recommendation part recommends top-k POIs that

users get the highest satisfaction. After that, the fair allocation balances user satisfaction and

POIs visit demands. In the recommendation part, we need to capture user spatio-temporal

dependencies. Thus, we seek the model that can capture user–personalised preferences and

spatio-temporal influences. The existing models [4, 10] can capture user spatio-temporal

dependencies better than the state-of-the-art models. To model user interests-based POI

recommendations, we apply multi-attention-based transformer architecture [4] to capture

heterogeneous factors’ influence appropriately and attention-based LSTM model [2] to cap-

ture spatiotemporal information in POI recommendation. The allocation part uses over-

demand cut and under-demand add policies to allocate POIs among the users to make the

POI capacity-based envy-free. We describe each part of the proposed model in the next

subsections.

4.1. Recommendation Model

Existing POI recommendation models [4, 2, 3, 14, 17] employed user interest–based POI

recommendation that considers spatiotemporal influences and personalised user preferences

that ensure user satisfaction. Our main motive of this research paper is to propose a fair

POI recommendation method that ensures that both users and POIs are satisfied with the

recommendations. Thus, we avoid a detailed description of the POI recommendation model.

We can apply any recommendation model in our proposed fair k POI recommendation. Each

model recommends candidate sets to the users. The candidate set focuses on user satisfac-

tion but not user allocation among POIs, as the latter is addressed by the allocation model.

Here, selection probability distributions consider a user satisfaction score that depends on

spatiotemporal dependencies and personalised preferences. To make a fair POI recommen-

dation, however, we need to focus on POI utilisation. The POI utilisation is based on users’

visit level, which depends on the user allocation.
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4.2. Allocation Model

User interest–based recommendation may create biased POI allocation; as a result, POIs

are assigned over their capacity, leading to a crowding problem, or under-allocated, leading

to user scarcity problem. Appropriate POI allocation is necessary to solve these problems.

However, this is challenging because of variability in POI demand. Due to the variations

in the number of visitors at different times, exact demand is hard to determine. Hence,

we introduce some margin / flexibility with the thresholds. This allocation model solves

over–demand and minimises under–demand, seeking to achieve exact demand for the POIs

to the greatest extent possible. Figure 5(a) depicts the over-demand scenario, in which three

users are interested in being allocated to POI p1, with a capacity of two. However, p1 cannot

fulfill demands from all of these users at one time because its capacity is two. Figure 5(b)

illustrates POI under–demand, in which the capacity of each POI is two, but only one user

is allocated to each POI. However, solving POI over and under-demand is challenging

General room sharing problems [8, 9] solve the over–demand problem based on capacity

diversity and budget constraints. However, we cannot apply an existing model because

the problem in our case is NP-hard, meaning that we cannot use existing models designed

to solve a room-sharing problem with a maximum capacity of four beds. Moreover, POI

visitation levels are more significant than can be accounted for in room-sharing problems.

Thus, we are unable to apply the existing room allocation models, in which computational

complexity increases exponentially with the POI capacity. The FairRec model [6] proposed

a fair item recommendation that allows each POI to receive envy-free allocation up to one

item. However, the FairRec model allocates items equally; this approach does not perform

well in POI recommendation because POIs have different capacities. We can not apply a

greedy approach to distribute users based on capacity because in that case, users will not

have their individual preferences satisfied. Furthermore, some POIs will lose their popularity

because all POI will get the same proportion of user numbers.

To solve these challenges, we propose a new POI allocation model to solve the over and

under–demand problems. The model first identifies over–demanded and under-demanded
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Figure 5: Example of POI over and under–demand problems. (a) The over-demand scenario, where
three users are interested in visiting p1 at a time when capacity is two. (b) The under–demand
scenarios where demand is one and capacity is two. (c) Illustration of an over–demand cut and
under–demand add policy, where the score indicates the user interest in the POI. Here, the weight
between user and POI indicates the users’ personalised interest in the POI.

POIs. Subsequently, among the users in the over–demanded POI, we select a sub-group

of these users. Below, we will describe how to select a capacity-based user group for POI

allocation. After that, we assign these users from over-demanded POIs to under-demanded

POIs, to balance out the demands among POIs.

4.2.1. Over–demand Cut Policy

In allocation problems, over-demand is a common occurrence. In a POI network, over-

demand may occur due to POI popularity. Users generally prefer to visit popular POIs in a

network. In Figure 5(a), three users, u1, u2 and u3, are interested in visiting POI p1 at the

same time. Therefore, we have to select two of the three users to get maximum satisfaction.

This work applies a cut policy that removes users until the number of users matches the

POI capacity. In this example, we have to cut one user from the POI’s assigned list. While
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we can cut extra users randomly from this list, this may reduce user satisfaction. User

satisfaction will vary depending on how much users like the POI. Here, users u1, u2 and u3

like POI p1 with a value of 0.28, 0.27 and 0.3, respectively. These values come from the POI

recommendation transition probability. We therefore remove user u2 from the over-demand

POI p1, as that maximises the utilisation of the POI while maximising the total satisfaction

among the remaining users.

Figure 5(a) shows that the POI allocation satisfaction is 0.85 (0.28 + 0.27 + 0.3). If we

cut u1 users from the network POI, the assigned weight of POI p1 will equal the capacity,

and the new score will be 0.57 (0.27 + 0.3). Similarly, we get a satisfaction score of 0.58

(0.28 + 0.3) when we remove u2 and 0.55 (0.28 + 0.27) when we remove u3. Our main goal is

to maximise satisfaction; thus, we cut user u2 from the POI assign list, which maximises the

overall satisfaction associated with the POI and assigned users. This cut process is continued

until the number of users in the allocated POI is less than the capacity of the POI.

4.2.2. Under–demand Add Policy

After removing users based on the over-demand cut policy, we need to assign these users

to the under–demanded POIs. Figure 5(b) shows that p2 and p3 are under-demanded POIs

that are assigned only one user, although their capacity is two. The question that now arises

is how to select an appropriate POI for the cut users that will maximise satisfaction. Our

solution is to add users to the POI that can generate the highest satisfaction possible. For

example, in Figure 5, p3’s score is higher than p2’s score because the recommended top-3

list for user u2 is [p1, p3, p2]. Thus, we assign u2 to the p3 demand list. If the assigned POI

demand is equal to the capacity, we remove it from the under-demanded POI group and set

it as a fair POI allocation.

4.2.3. Fair Allocation Algorithm

Algorithm 1 describes the POI fair allocation process. The algorithm takes user set,

POI set, POI demand, POI capacity as input and returns fair allocated POIs to the system.

Initially, the set of un-allocated users, under-allocated POIs and fair-allocated POIs are

empty in line 1. For each POI in POIs set, calculate demand and if the demand is higher
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Algorithm 1: FairPOIAllocation(U, P, Pdem, Pcap)

Data: U : Users set; P : POI set; Pdem : Users POI demand; Pcap: POI capacity
set.

Result: POIallo: Fair Allocated POIs
1 Uun allo, POIund allo, POIallo ← ∅, ∅, ∅;
2 for pi ∈ P do
3 while pidem > picap do
4 ucut ← ∅; max score = 0.0;
5 for u ∈ pidem do
6 score = Score after removing u from pidem
7 if max score < score then
8 max score = score
9 ucut = u /* Least significant User*/

10 end

11 end
12 Uun allo = Uun allo ∪ ucut /*Unassigned users*/
13 pidem = pidem − 1 /* Reduce POI demand */

14 end
15 if pidem < picap then
16 Applying POIund allo = POIund allo ∪ pi
17 else
18 POIallo = POIallo ∪ pidem
19 end

20 end
21 for uj ∈ Uun allo do
22 psel = ∅;
23 for pl ∈ Rec Listuj

do
24 if pl ∈ POIund allo then
25 psel = pl /* Next significant POI */
26 break

27 end

28 end
29 Add uj to psel and update pseldem.
30 if pseldem == pselcap then
31 POIallo = POIallo ∪ pseldem

32 Remove pseldem from POIund allo

33 end

34 end
35 POIallo = POIallo ∪ POIund allo

36 Return POIallo; /* Return Fair POI allocation */
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than the capacity, it finds unallocated users using the over-demanded user cut policy in lines

4-11. The removed user is added to the under-allocated users’ list in line 12. This process

is continued until the POI demand reaches POI capacity using the loop in lines 3-14. After

removing over demand, we add POI demand list as fair POI allocation if its demand is equal

to the capacity in line 18. Otherwise, add to the under-allocation list in line 16. This process

is continued for each POI using the loop in lines 2-20. Then, we need to add unallocated

users to the under-allocated POIs. For each un-allocated user in Uun allo list, identify the

appropriate POI among the under-demanded POIs list in lines 22-28. The cutting user uj

is added with psel and update psetdem in line 29. If the update demand is equal to capacity,

remove the POI from the under-demanded list and add it to the fair allocation list in lines

30-33. After allocating all un-allocating users in lines 21-34, the under-demanded POIs are

added with fair allocated POIs in line 35. Finally, the algorithm returns fair POI allocation

in line 36.

4.3. The CAFPR Algorithm

Our proposed Capacity Aware Fair POI Recommendation (CAFPR) model is shown

in Algorithm 2. The main challenges of this model are to incorporate recommendation and

allocation using multiple features. The testing and training sets are first partitioned in line

1, after which the sample input based on batch size is fed into the recommendation model in

lines 2–3. Next, the recommendation model generates user satisfaction scores in line 4. We

apply the POI allocation model that ensures fair user distributions based on their capacity in

line 5. The top-k POI recommendations learned and generated by the model are distributed

to the users in line 6. Finally, the algorithm returns to the CAFPR model in line 8. Upon

the completion of this algorithm, users get appropriate satisfaction, and POIs get a fair user

allocation.

Here, POI allocation is an NP-hard because POI will get visitation level considering any

subset of users. Hence we consider both user satisfaction and POI visitation level together,

we can not solve the allocation problem using existing mathematical programming, e.g.,

cake-cutting, picking sequence, EFN. Thus, we apply over-demand cuts and under-demand
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Algorithm 2: CAFPR Model (U, P, C, SH)

Data: U=Users, P=POIs, C=Capacity, SH=Sequence History

Result: CAFPR Model

1 Seq train, Seq test = Partition Data(SH, test ratio)

2 for Xb ← sample(Seq train) do

3 Pass these xb into in recommendation model.

4 Find User satisfaction USuj
(pi) from the output of recommendation model.

5 Get PSpi using Algorithm 1.

6 Build the Fair Top-K POI Recommendation CAFPR model.

7 end

8 Return CAFPR Model

add policy-based heuristics to ensure the POI visitation level at a threshold value.

5. Experiments

This section outlines our experiments, evaluates and compares our proposed CAFPR

model with the selected baselines, and discusses the results. We first describe the datasets

and then compare a set of baselines against our proposed model.

5.1. Datasets

We conduct extensive experimental analyses based on the five datasets 1 that were used

in [16, 4]. We applied the same data pre-processing steps outlined in [4]. Figure 6 shows the

POI capacities in the California Adventure dataset. We can see that the maximum capacity

of POIs is 13 and that the minimum is 6. This shows that 13 POIs out of the 25 POIs have

the same capacity level. This is a theme park dataset, meaning that the number of users is

limited. We can set a unique time-based number of users who visit those POIs for 15 min,

30 min, or one hour; in this capacity calculation, we have applied a number of users based

on a 15-min visit duration.

1https://codeocean.com/capsule/5378181/tree/v1
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Figure 6: The POI capacities in the California Adventure dataset.

We split the data into testing and training sets; specifically, 70% is used as the training

set, and the remaining 30% is designated as the testing set. The details of the datasets are

summarised in Table 2.

Table 2: Description of various datasets (K = 1000)

Dataset # Photos / # Check-ins # POI Visits # Users # POIs

California Adventure 193.0K 57.2K 2.6K 25

Magic Kingdom 133.2K 74.0K 3.3K 27

Budapest 36.0K 18.5K 0.9K 39

Toronto 157.5K 39.4K 1.4K 30

Melbourne 17.1K 5.8K 0.9K 242

5.2. Baseline Algorithms

In this research work, our proposed CAFPR model recommends k POIs to the users and

ensures POI’s capacity–aware allocation fairness. Thus, to evaluate the performance of the

proposed model, we consider two recommended algorithms. The first one is TLR-M [4],

which is a multi-head attention-based transformer model that incorporates user interests,

distance and temporal information to simultaneously recommend top-k POIs to the users

and predict their queuing time. And, the second one is ATST-LSTM [2], which is an

attention-based spatiotemporal LSTM–based model that uses check-in contextual informa-
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tion to recommend the top-k POIs. The model uses spatial and temporal information to

predict users’ future check-in patterns accurately.

Subsequently, we run the proposed CAFPR model on all datasets considering two values

of the recommended size k, which are 5 and 10. To facilitate fair comparison, we use the

following baselines:

• FairRec [6]: The model uses a two-sided definition of fairness, which encompasses

both social or judicial precepts and long-term sustainability. The model maps the fair

recommendation problem to a fair allocation problem.

• FairRecPlus [7]: It is a modification of FairRec that improves the recommendation

performance for the customers ensuring the same level of fairness.

• TOPK: The TOPK model recommends top-k POIs based on the recommendation

output.

• LOWK: The LOWK model recommends low-k POIs based on the recommendation

output.

• Random: It randomly selects k POIs for user recommendation based on the recom-

mendation output.

5.3. Performance Evaluation

To measure the performance of our CAFPR model, we divide the evaluations into two

sides: user–side metrics and POI–side metrics. Here, the metrics for both sides are those

used in [6]. Moreover, we also employ the additional user-side evaluation metrics used in

[4]. Therefore, to evaluate the CAFPR and the baselines, we use the following evaluation

metrics.

5.3.1. User–side Metrics

The following metrics have been selected for use in evaluating the proposed model’s

fairness to the users:
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• Precision@k: Assume that Pr denotes the next POIs in the actual visit sequence and

that Pk represents the top–k recommended POIs. The precision represents the ratio

of the next top-k POI that is present in the original next POIs as follows:

Precision@k =
|Pr

⋂
Pk|

|Pk|
(6)

• Recall@k: We use the same Pr and Pk as above. Here, Recall@k represents the

proportion of real next POIs that are also present in the top-k recommended POIs

that is defined as follows:

Recall@k =
|Pr

⋂
Pk|

|Pr|
. (7)

• F1-Score@k: This is the harmonic mean of both recall and precision of user u, defined

as follows:

F1− Score@k =
2×Recall@k × Precision@k

Recall@k + Precision@k
(8)

• NDCG@k: This evaluates the performance of next POI recommendation based on

the position of the next POI in the result list. It is defined as follows:

NDCG@k =
1

U

∑
u∈U

DCG@k(u)

IDCG@k(u)
(9)

DCG@k(u) =
k∑

i=1

2Relu − 1

log2(Indu + 2)
(10)

where Relu is 1 if hit@N = 1 and 0 otherwise. Indu is the hit position index and takes

values ranging from 0 to N-1. Finally, IDCG@k(u) is the ideal DCG@k(u), meaning

that the index values range from 0 to k-1.

5.3.2. POI-side Metrics

Fair recommendation depends not only on user-side metrics but also on POI-side metrics.

We modify [6, 7] evaluation metrics based on the capacity-aware evaluation and define the

following evaluation to demonstrate POI–side fairness and efficiency.
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• Capacity-based Fairness of Satisfied POIs (CFSP): Capacity–based POI fair-

ness depends on the number of user allocations considering the capacity limit. If the

user allocation of a POI is greater than the minimum percentage of capacity exposure,

then the POI will be satisfied. The fraction of the satisfaction score can be defined as

follows:

CFSP =
1

|P |
∑
p∈P

Dem(p) ≥ Cap(p) ∗mindem (11)

where Dem(p) and Cap(p) represent the allocated users and capacity of p, respectively.

Here, mindem is the minimum under–demand threshold parameter.

• Capacity based Envy Free Allocation (CEFA): User recommendation depends

on the users’ personalised interests. Therefore, if the ratios of POI exposures to POI

capacities are diverse, low-exposure POIs will lose market value and will be considered

to envy high-exposure POIs. Thus, we calculate the envy-free allocation score as

follows.

CEFA = 1.0−
∑P−1

pi=1

∑P
pj=pi+1Envy Score(pi, pj)

|P | × (|P | − 1)/2
(12)

where, Envy Score(pi, pj) = 1 if two POIs pi and pj are not envy free according to the

figure 2. Otherwise, Envy Score (pi, pj) = 0.

• Gini Index (Gini): This index measures item frequency distribution inequality

[43], e.g. the number of users (exposure) in the POI recommendation context. In

short, it measures POI individual level–based exposure. Given a set of POIs P =

{p1, p2, · · · , pn} and their exposure numbers {e1, e2, · · · , en}, the Gini is calculated as

follows:

Gini(P ) =
1

2|P |2ē

|P |∑
i=1

|P |∑
j=1

|ei = ej| (13)

where ē is the average exposure number of all POIs.
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5.3.3. Balancing Metrics between User and POI Sides

To provide a balanced consideration of two-sided metrics, we use rank metrics incor-

porating NDCG and CEFA metrics as follows. Here, the first three user–side evaluations

represent user satisfaction scores, while NDCG expresses the selection of POIs’ order rank-

ing. Moreover, for the provider-side metrics, Gini represents capacity-free user exposure,

and CFSP expresses POI utilisation value, although this cannot describe the level of fair-

ness. Thus, we select the CEFA–based ranking, which can account for the capacity–based

envy–free allocations among the POIs.

• Rank@k: Rank metrics indicate the average rank of NDCG (user side) and CEFA

(POI side), which is as follows:

Rank@k =
Rank(NDCG@k) + Rank(CEFA@k)

2
(14)

5.4. Results Analysis

The fairness and recommendation efficiency of our proposed CAFPR model and the

existing baselines are evaluated on two sides: the user side and the POI side. In the following

sections, we describe the fairness results for each side in detail.
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Table 3: Performance analyses between the proposed CAFPR and baselines using TLR-M recommendation baselines in top-5 and
top-10 POI allocation. Here, ↑ and ↓ indicate that high and low values, respectively, are desirable, while numbers in bold indicate
the best results and underlined scores the second-best results. Numbers within brackets show the rank based on F1-score and
CEFA scores, where 1 = best and 5 = worst.

topk = 5 topk = 10 Avg

User side evaluations POI side evaluations
Rank↓ User side evaluations POI side evaluations

Rank↓ Rank↓
Pre ↑ Re ↑ F1 ↑ NDCG ↑ CFSP ↑ CEFA ↑ Gini ↓ Pre ↑ Re ↑ F1 ↑ NDCG ↑ CFSP ↑ CEFA ↑ Gini ↓

T
L

R
-M

C
al

if
or

n
ia

Random 0.037 0.186 0.062 0.039 (5) 0.7 0.752 (3) 0.259 4.0 0.034 0.339 0.062 0.040 (4) 0.52 1.0 (1) 0.262 2.5 3.25

LOWK 0.033 0.165 0.055 0.035 (6) 0.44 0.483 (5) 0.189 5.5 0.033 0.330 0.063 0.035 (5) 0.60 0.677 (4) 0.207 4.5 5.0

TOPK 0.037 0.191 0.064 0.042 (4) 0.560 0.497 (4) 0.254 4.0 0.037 0.372 0.068 0.044 (2) 0.48 0.767 (3) 0.265 2.5 3.25

FairRec 0.038 0.192 0.064 0.043 (3) 0.52 0.98 (2) 0.263 2.5 0.038 0.375 0.068 0.043 (3) 0.64 0.940 (2) 0.264 2.5 2.5

FairRecPlus 0.038 0.192 0.064 0.044 (2) 0.52 1.0 (1) 0.263 1.5 0.038 0.376 0.068 0.043 (3) 0.64 0.940 (2) 0.264 2.5 2.0

CAFPR 0.041 0.206 0.069 0.045(1) 0.84 1.0 (1) 0.246 1.0 0.040 0.401 0.073 0.046 (1) 0.88 1.0 (1) 0.253 1.0 1.0*

M
ag

ic
K

Random 0.030 0.145 0.048 0.037 (4) 0.407 0.874 (2) 0.262 3.0 0.031 0.315 0.057 0.037 (4) 0.444 0.902 (2) 0.265 3.0 3.0

LOWK 0.025 0.128 0.042 0.033 (5) 0.407 0.652 (3) 0.258 4.0 0.035 0.346 0.063 0.035 (5) 0.593 0.761 (4) 0.262 4.5 4.25

TOPK 0.031 0.153 0.051 0.038 (3) 0.407 0.607 (4) 0.265 3.5 0.034 0.344 0.062 0.041 (3) 0.481 0.644 (5) 0.271 4.0 3.75

FairRec 0.037 0.185 0.062 0.040 (2) 0.444 1.0 (1) 0.258 1.5 0.035 0.354 0.064 0.042 (2) 0.407 0.846 (3) 0.264 2.5 2.0

FairRecPlus 0.037 0.185 0.062 0.040 (2) 0.444 1.0 (1) 0.258 1.5 0.035 0.354 0.064 0.042 (2) 0.407 0.846 (3) 0. 264 2.5 2.0

CAFPR 0.038 0.188 0.063 0.043 (1) 0.926 1.0 (1) 0.254 1.0 0.037 0.372 0.068 0.044 (1) 0.852 1.0 (1) 0.253 1.0 1.0*

B
u

d
ap

es
t

Random 0.020 0.102 0.037 0.026 (3) 0.538 0.690 (2) 0.280 2.5 0.022 0.221 0.040 0.026 (3) 0.462 0.702 (3) 0.28 3.0 3.0

LOWK 0.021 0.108 0.036 0.014 (5) 0.461 0.419 (4) 0.324 4.5 0.017 0.166 0.037 0.018 (4) 0.564 0.490 (5) 0.248 4.5 4.5

TOPK 0.024 0.108 0.039 0.027 (2) 0.410 0.416 (5) 0.289 3.5 0.022 0.221 0.040 0.028 (2) 0.564 0.503 (4) 0.279 3.0 3.25

FairRec 0.022 0.103 0.038 0.025 (4) 0.436 0.654 (3) 0.280 3.5 0.025 0.250 0.045 0.026 (3) 0.436 0.733 (2) 0.284 2.5 2.75

FairRecPlus 0.022 0.103 0.038 0.025 (4) 0.436 0.654 (3) 0.280 3.5 0.025 0.251 0.046 0.026 (3) 0.436 0.733 (2) 0.284 2.5 3.0

CAFPR 0.025 0.127 0.042 0.033 (1) 0.897 0.994 (1) 0.272 1.0 0.026 0.259 0.047 0.032 (1) 0.897 0.853 (1) 0.256 1.0 1.0*

T
or

on
to

Random 0.025 0.131 0.047 0.032 (4) 0.433 0.924 (2) 0.348 3.0 0.031 0.31 0.054 0.032 (4) 0.367 0.924 (2) 0.269 3.0 3.0

LOWK 0.022 0.119 0.037 0.029 (5) 0.366 0.409 (5) 0.214 5.0 0.025 0.249 0.052 0.032 (4) 0.433 0.683 (5) 0.269 4.5 4.75

TOPK 0.028 0.144 0.048 0.035 (2) 0.367 0.720 (4) 0.281 3.0 0.031 0.316 0.058 0.035 (3) 0.503 0.823 (4) 0.302 3.5 3.25

FairRec 0.029 0.144 0.049 0.034 (3) 0.367 0.903 (3) 0.263 3.0 0.033 0.334 0.061 0.036 (2) 0.333 0.910 (3) 0.267 2.5 2.75

FairRecPlus 0.029 0.145 0.049 0.032 (4) 0.367 0.903 (3) 0.2363 3.5 0.033 0.334 0.061 0.036 (2) 0.333 0.910 (3) 0.265 2.5 3.0

CAFPR 0.030 0.148 0.05 0.04 (1) 0.867 1.0 (1) 0.246 1.0 0.032 0.322 0.059 0.046 (1) 0.867 1.0 (1) 0.265 1.0 1.0*

M
el

b
ou

rn
e

Random 0.004 0.019 0.006 0.005 (3) 0.442 0.506 (3) 0.189 3.0 0.006 0.057 0.010 0.004 (4) 0.554 0.904 (3) 0.323 3.5 3.25

LOWK 0.005 0.026 0.008 0.005 (3) 0.453 0.426 (5) 0.167 4.0 0.005 0.051 0.010 0.005 (3) 0.285 0.746 (5) 0.286 4.0 4.0

TOPK 0.005 0.023 0.008 0.007 (2) 0.465 0.50 (4) 0.166 3.0 0.005 0.047 0.009 0.007 (2) 0.289 0.762 (4) 0.305 3.0 3.0

FairRec 0.005 0.027 0.009 0.002 (5) 0.50 0.838 (2) 0.190 3.5 0.007 0.066 0.012 0.003 (5) 0.612 0.917 (2) 0.320 3.5 3.5

FairRecPlus 0.005 0.028 0.009 0.003 (4) 0.50 0.838 (2) 0.190 3.0 0.007 0.066 0.012 0.003 (5) 0.612 0.917 (2) 0.320 3.5 3.25

CAFPR 0.007 0.036 0.012 0.011 (1) 0.607 0.932 (1) 0.144 1.0 0.005 0.054 0.010 0.008 (1) 0.702 1.0 (1) 0.291 1.0 1.0*
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5.4.1. User-side Fairness Results Analysis

Table 3 shows the user–side performance analysis of our proposed CAFPR and the base-

lines using the TLR-M [4] recommendation model. It shows that using TLR-M recom-

mendation, our model outperforms the baselines in 20 evaluation scores among 20 scores

on user side in top-5 recommendations. Our model outperforms TOPK method because

TOPK method only focuses on user interest without considering POIs capacity. Due to

POIs capacity, users may sacrifice their preferences in a real-life scenario. That is why our

model performs better in precision@k, recall@k and F1-score@k. Here, FairRecPlus [7] is

the best baseline and our model outperforms FairRecPlus [7] and FairRec [6] as well as other

baselines. FairRecPlus and FairRec distribute POI among the users and allow free allocation

of up to one product envy. Due to POI’s various capacities, envy-free up to one POI does

not satisfy all producers. In that case, our proposed capacity-based recommendation gets a

real scenario and outperforms user evaluation metrics.

Table 4 shows the user–side performance analysis of our proposed CAFPR and the base-

lines using theATST-LSTM [2] recommendation model. We also see that the proposed

model outperforms 14 evaluation metrics among 20 metrics on user side in top-10 recom-

mendations. On the other hand, in ATST-LSTM recommendation, our proposed model

outperforms only 3 evaluation metrics among 20 metrics on user side in top-5 recommen-

dations and 7 evaluation metrics among 20 metrics in top-10 recommendations. These two

recommendation model performances are different because TLR-M model focused on user

personalised preferences along with spatio-temporal impacts, whereas ATST-LSTM focused

on only spatio-temporal dependencies. It is common that existing TOPK performs well on

user-side evaluation metrics. Therefore, our model CAFPR outperforms TOPK, FairRec

and FairRecPlus when personalised preferences are more significant.

28



Table 4: Performance analyses between the proposed CAFPR and baselines using ATST-LSTM recommendation baselines in top-5
and top-10 POI allocation. Here, ↑ and ↓ indicate that high and low values, respectively, are desirable, while numbers in bold
indicate the best results and underlined scores the second-best results. Numbers within brackets show the rank based on F1-score
and CEFA scores, where 1 = best and 5 = worst.

topk = 5 topk = 10 Avg

User side evaluations POI side evaluations
Rank ↓ User side evaluations POI side evaluations

Rank ↓ Rank ↓
Pre ↑ Re ↑ F1 ↑ NDCG ↑ CFSP ↑ CEFA ↑ Gini ↓ Pre ↑ Re ↑ F1 ↑ NDCG ↑ CFSP ↑ CEFA ↑ Gini ↓

A
T

S
T

-L
S

T
M

C
al

if
or

n
ia

Random 0.033 0.162 0.056 0.030 (3) 0.780 0.760 (2) 0.344 2.5 0.033 0.329 0.060 0.026 (5) 0.80 0.720 (2) 0.352 3.5 3.0

LOWK 0.035 0.175 0.058 0.028 (4) 0.200 0.667 (3) 0.276 3.5 0.032 0.322 0.058 0.030 (4) 0.480 0.393 (5) 0.228 4.5 4.0

TOPK 0.040 0.201 0.067 0.035 (1) 0.480 0.480 (4) 0.297 2.5 0.038 0.379 0.069 0.034 (2) 0.520 0.443 (4) 0.360 3.0 2.75

FairRec 0.034 0.171 0.057 0.032 (2) 0.880 0.780 (1) 0.346 1.5 0.039 0.391 0.071 0.035 (1) 0.640 0.547 (3) 0.392 2.0 1.75

FairRecPlus 0.034 0.173 0.058 0.032 (2) 0.880 0.780 (1) 0.346 1.5 0.039 0.393 0.071 0.035 (1) 0.640 0.547 (3) 0.392 2.0 1.75

CAFPR 0.036 0.182 0.061 0.035 (1) 0.880 0.780 (1) 0.254 1.0 0.033 0.332 0.060 0.033 (3) 0.840 0.780 (1) 0.241 2.0 1.5*

M
ag

ic
K

Random 0.029 0.147 0.049 0.036 (2) 0.752 0.715 (2) 0.339 2.0 0.029 0.295 0.054 0.033 (3) 0.839 0.725 (3) 0.350 3.0 2.5

LOWK 0.029 0.139 0.049 0.032 (5) 0.444 0.453 (5) 0.290 5.0 0.032 0.319 0.057 0.033 (3) 0.630 0.587 (4) 0.300 3.5 4.25

TOPK 0.031 0.153 0.051 0.033 (4) 0.630 0.519 (4) 0.283 4.0 0.032 0.320 0.058 0.034 (2) 0.556 0.547 (5) 0.356 3.5 3.75

FairRec 0.036 0.179 0.060 0.035 (3) 0.719 0.713 (3) 0.345 3.0 0.037 0.366 0.067 0.035(1) 0.869 0.745 (2) 0.345 1.5 2.25

FairRecPlus 0.036 0.179 0.060 0.035 (3) 0.719 0.713 (3) 0.345 3.0 0.037 0.366 0.067 0.035(1) 0.869 0.745 (2) 0.345 1.5 2.25

CAFPR 0.033 0.159 0.053 0.037 (1) 0.878 0.887 (1) 0.210 1.0 0.034 0.342 0.062 0.035 (1) 0.889 0.795 (1) 0.250 1.0 1.0*

B
u

d
ap

es
t

Random 0.020 0.106 0.032 0.024 (3) 0.410 0.478 (2) 0.333 2.5 0.014 0.137 0.025 0.024 (2) 0.410 0.676 (3) 0.347 2.5 2.5

LOWK 0.021 0.105 0.035 0.021 (5) 0.385 0.408 (5) 0.318 5.0 0.025 0.247 0.045 0.023 (3) 0.436 0.447 (5) 0.323 4.0 4.5

TOPK 0.026 0.132 0.044 0.026 (2) 0.462 0.440 (3) 0.298 2.5 0.024 0.242 0.044 0.024 (2) 0.487 0.545 (4) 0.326 3.0 2.75

FairRec 0.024 0.121 0.040 0.022 (4) 0.410 0.422 (4) 0.340 4.0 0.023 0.232 0.042 0.023 (3) 0.410 0.693 (2) 0.341 2.5 3.25

FairRecPlus 0.024 0.121 0.040 0.023 (4) 0.410 0.422 (4) 0.340 4.0 0.023 0.232 0.042 0.023 (3) 0.410 0.693 (2) 0.341 2.5 3.25

CAFPR 0.021 0.105 0.035 0.027 (1) 0.513 0.493 (1) 0.290 1.0 0.026 0.258 0.047 0.027 (1) 0.846 0.727 (1) 0.277 1.0 1.0*

T
or

on
to

Random 0.030 0.150 0.050 0.031 (5) 0.600 0.772 (2) 0.353 3.5 0.028 0.279 0.051 0.028 (4) 0.600 0.814 (1) 0.334 2.5 3.0

LOWK 0.032 0.159 0.053 0.034 (4) 0.200 0.439 (4) 0.564 4.0 0.030 0.296 0.054 0.032 (3) 0.433 0.506 (4) 0.427 3.5 3.75

TOPK 0.037 0.185 0.062 0.036 (2) 0.633 0.623 (3) 0.275 2.5 0.033 0.326 0.059 0.033 (2) 0.667 0.759 (3) 0.282 2.5 2.5

FairRec 0.037 0.185 0.062 0.038 (1) 0.700 0.814 (1) 0.343 1.0 0.033 0.335 0.061 0.034 (1) 0.600 0.781 (2) 0.344 1.5 1.25*

FairRecPlus 0.037 0.185 0.062 0.038 (1) 0.700 0.814 (1) 0.343 1.0 0.033 0.335 0.061 0.034 (1) 0.600 0.781 (2) 0.344 1.5 1.25*

CAFPR 0.034 0.172 0.057 0.035 (3) 0.900 0.814 (1) 0.265 2 0.034 0.339 0.062 0.033 (2) 0.900 0.814 (1) 0.266 1.5 1.75

M
el

b
ou

rn
e

Random 0.002 0.010 0.003 0.005 (4) 0.433 0.478 (3) 0.339 3.5 0.004 0.040 0.007 0.004 (3) 0.612 0.552 (2) 0.334 2.5 3.0

LOWK 0.004 0.020 0.007 0.004 (5) 0.471 0.466 (4) 0.323 4.5 0.004 0.045 0.008 0.004 (3) 0.545 0.518 (4) 0.327 3.5 4.0

TOPK 0.011 0.054 0.018 0.010 (1) 0.248 0.437 (5) 0.612 3.0 0.008 0.084 0.015 0.005 (2) 0.339 0.439 (5) 0.534 3.5 3.25

FairRec 0.010 0.050 0.017 0.008 (2) 0.517 0.613 (2) 0.351 2.0 0.005 0.054 0.010 0.008 (1) 0.574 0.536 (3) 0.355 2.0 2.0

FairRecPlus 0.010 0.051 0.017 0.008 (2) 0.517 0.613 (2) 0.351 2.0 0.005 0.054 0.010 0.008 (1) 0.574 0.536 (3) 0.355 2.0 2.0

CAFPR 0.005 0.025 0.008 0.007 (3) 0.529 0.687 (1) 0.335 2.0 0.004 0.041 0.007 0.005 (2) 0.620 0.576 (1) 0.319 1.5 1.75*
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5.4.2. POI–side Fairness Results Analysis

Table 3 shows that our proposed model outperforms all baselines on POI–side fairness

evaluation metrics in terms of CFSP, CEFA and Gini. The CFSP and CEFA are capacity-

based evaluations, while Gini relates to POI exposures without capacity. In TLR-M recom-

mendation model, our proposed CAFPR model outperforms 13 evaluation metrics among

the 15 evaluations in top-5 values and 12 metrics among 15 metrics in top-10 values in POI

evaluation metrics. Besides this, using ATST-LSTM recommendation, our allocation model

outperforms 15 evaluation metrics and 14 evaluation metrics, respectively, in top-5 and top-

10 values among 15 evaluation metrics in provider evaluation metrics. In TLR-M, the CFSP

evaluation score is maximum 0.926 and minimum 0.670 in top-5 values and maximum 0.897

and minimum 0.702 in top-10 values. The proposed CAFPR outperforms the best in five

datasets. The main reason for this performance is capacity diversity. If the dataset’s POIs

capacity is not same, our model performs well. If all POIs capacity is the same, our model

and FairRecPlus performance will be the same. However, in the real-world scenario, POI

capacity is different. Thus our model performs better than the FairRecPlus model. It has

been seen that CAFPR outperforms all other baselines in CEFA evaluation metrics. The

main reason is that our model solves the overcrowding and user scarcity problems.

Although FairRecPlus solves the overcrowding problem, it cannot solve capacity-based

user scarcity problems. In that case, high capacity-based POIs get similar user distribution

to low capacity-based POIs. In that case, POIs with high capacity receive a similar user dis-

tribution to low-capacity POIs, which causes high-capacity POIs to face scarcity problems

and encounter difficulties with running their business. Furthermore, on the Gini, LOWK

sometimes performs well because it depends only on POI exposure while ignoring user inter-

est. Our model performs well on this metric for two reasons: the capacity-based allocation

model distributes users based on the POI capacity ratio, meaning that POIs receive suffi-

cient users to meet their minimum under-demand and envy capacity threshold values. Thus,

POIs get sufficient users to fulfill their minimum under-demand and envy capacity threshold

value. The TOPK model produces the worst Gini evaluation results because it only focuses
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on user interests. Finally, we conclude that our proposed model outperforms all baselines.

5.4.3. Trade–off between User Utility and POI Fairness

We propose rank evaluation based on F1-score rank from the user side and CEFA rank

from the POI side to show the impacts of two sides’ fairness in one evaluation metric. We

then take the average rank score, which reveals that our model rank is best than the baselines.

It has been shown that in the maximum case, our proposed model outperforms the baselines

in terms of the Rank evaluation metric. Except for the Toronto and Melbourne datasets’

top-10 Rank values, all cases attain rank 1 values. The last column of Table 3 indicates the

average rank of the top 5 and top 10 ranks. Here, values in bold that are marked with a star

(*) indicate that our model has outperformed the baselines. We have also verified our model

using the ATST-LSTM recommendation model; the results show that our CAFPR model

outperforms the baselines on most of the evaluation metrics. We present the ATST-LSTM

recommendation–based results in Table 4 based on mindem = 0.7 and Envycap = 0.3.

5.5. Parameter mindem Value Impact Analysis

The two charts in Figure 7 show the impacts of mindem where Envycap is fixed (0.3). The

user-side evaluation F1-score does not change substantially as this parameter changes. The

parameter mindem indicates the number of envy pairs of POIs in the model. The results show

that if mindem is large, the envy score is higher because POIs are not happy if they do not

receive their capacity-based user distributions. However, if mindem is small, this means that

POIs agree to compromise their utilisation; in this case, most of the models get high values.

However, top-k allocation obtains a maximum of 85% envy-free allocation when POIs are

flexible and require only 10% capacity to solve the under-demand problem. This shows that

our model’s F1–score is always better than that of the baselines.

5.6. Parameter Envycap Value Impact Analysis

Figure 7 shows Envycap impacts where mindem is fixed and it is 0.7. Our proposed

model gets the better results for all value changes and FairRec and Random also obtain the

highest POI exposure at high values. However, TOPK allocation obtains a maximum of
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80% envy-free allocation when POIs are flexible and require only 10% capacity to solve the

under-demand problem. It shows that our model F1-Score is always good than the baselines.
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Figure 7: Impacts of parameters mindem and Envycap in Magic Kingdom dataset.

5.7. Execution Time Comparison

Figure 5 shows the execution time (s) of our proposed model and baselines in top-10

allocation. Our proposed model is faster than the existing FairRec and FairRecPlus models.

The main reason is that the existing model used round robin technique to distribute users

among the POIs. It takes extra time compared to our proposed model. Our proposed model

takes a little bit extra time than TOPK, Randam and LOWK because these models allocate

users only once; there are no re-allocation strategies. However, our proposed CAFPR model

requires user re-allocation sometimes due to POI capacity limits. Finally, our proposed

model performs better than the baselines and execution time is significantly comparable

with existing FairRec and FairRecPlus models.

Table 5: Execution time (s) performance analyses between the proposed CAFPR and baselines
using TLRM recommendation baselines in top-10 POI allocation.

Dataset Random LOWK TOPK FairRec FairRecPlus CAFPR

T
L

R
-M

California 45.05 43.37 43.64 184.91 185.15 45.49

Magic K 82.69 77.66 75.73 480.99 482.37 78.77

Budapest 7.11 6.95 6.72 15.37 15.38 6.96

Toronto 10.91 11.69 10.91 16.21 16.22 11.45

Melbourne 7.59 7.27 7.65 16.46 16.78 8.00
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6. Conclusion

Capacity-aware fair recommendation is a significant and interesting research direction in

the field of location-based recommendation systems. This model takes into account not only

user preferences but also the capacity of POIs such as restaurants, museums, or parks. In

our proposed model, Capacity-Aware Fair POI Recommendation System, we aim to provide

personalized recommendations that are not only relevant but also fair and sustainable. In

this paper, we introduce capacity-aware fair top-k POI recommendations considering user

satisfaction and POI allocation. We apply a deep learning model that simultaneously incor-

porates recommendation and allocation in one framework. We use two deep learning models,

ATST-LSTM and TLR-M, for initial demand mining. Then, we propose an over-demand

cut policy and an under-demand add policies that ensure capacity-based envy-free allocation

for fair allocation. We evaluate our experiments based on user-side metrics and POI-side

metrics. The experimental results show that our proposed CAFPR model outperforms all

baseline models in five real datasets.

In this paper, our focus is primarily on individual personalized interests. However, we

acknowledge that when visitors are in a group or family setting, their preferences and rec-

ommendations may vary. As part of our future work, we aspire to explore the concept of

user group happiness and develop an approach to construct comprehensive itineraries that

cater to the diverse preferences, budget constraints, and time limitations of both individuals

and groups. By optimizing both individual and group satisfaction, we aim to provide a

holistic recommendation system that ensures an enjoyable and fulfilling experience for all

users involved.
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