Modelling Text Similarity: A Survey

Wenchuan Mu and Kwan Hui Lim
Singapore University of Technology and Design
{wenchuan_mu, kwanhui_lim} @sutd.edu.sg

Abstract—Online social networking services such as Twitter
and Instagram have become pervasive platforms for engaging in
discussions on a wide array of topics. These platforms cater to
both mainstream subjects, like music and movies, as well as more
specialized areas, such as politics. With the growing volume of
textual data generated on these platforms, the ability to define
and identify similar texts becomes crucial for effective investiga-
tion and clustering. In this paper, we explore the challenges and
significance of text similarity regression models in the context
of online social networking services. We delve into the methods
and techniques employed to define and find similarities among
texts, enabling the extraction of meaningful patterns and insights.
Specifically, we categorize text similarity regression models into
four distinct types: set-theoretic, sequence-theoretic, real-vector,
and end-to-end methods. This categorization is based on the
mathematical formalisation of similarity used by each model.
Ultimately, our survey aims to provide a comprehensive overview
of the interlinkages between independently proposed methods for
text similarity. By understanding the strengths and weaknesses
of these methods, researchers can make informed decisions when
designing novel approaches and algorithms. We hope this survey
serves as a valuable resource for advancing the state-of-the-art
in addressing the complex problem of text similarity.

Index Terms—Modelling and simulation, Deep learning and
embeddings, Algorithms and techniques

I. INTRODUCTION

The widespread adoption of online social networking ser-
vices, like Twitter and Instagram, has transformed the land-
scape of communication and information exchange. These
platforms have established themselves as influential mediums,
fostering discussions that encompass a diverse range of topics.
They serve as dynamic spaces accommodating both popular
and mainstream subjects. With the continual growth of these
platforms, the sheer volume of textual data generated necessi-
tates the development of robust mechanisms for defining and
identifying similarities among texts. Such mechanisms play a
pivotal role in enabling the extraction of meaningful patterns
and insights.

In the past years, the computation of similarity has gained
increasing importance as a fundamental tool in various social
computing tasks and real-world applications. These applica-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org,

ASONAM °23, November 6-9, 2023, Kusadasi, Turkey

© 2023 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 979-8-4007-0409-3/23/11...$15.00
https://doi.org/10.1145/3625007.3627305

Set model |

i}
{f'y, 3

Sequence model

The drilling has bogun :(1 hope the new
neiphbours upstairs will have their
renovations done quickly. Working from
home and having to deal with this noise is o

painful. life. Damn sian Similarity
(]
The “mic” I'm gifting my next door (xq,)
neighbor, for singing literally into the
midnight hour. .. they'd beller ban these (x'4,)
Vector model

mansters too. » Fkaraoke #sournotes
,
X1
X1
° () ¥,

#tonedeaf... https://t.co/iNugALEM
) X2

Similarity

Similarity computation with a
mathematical model gateway

Similarity

End-to-end

Similarity]

End-
to-end

Input texts from

social network
Fig. 1: Similarity can be computed using specific mathematical
models such as sets, sequences, or vectors, or it can be
computed in an end-to-end manner.

tions include information retrieval, clustering, topic detection,
social recommendation and even financial and legal domain.

For instance, search engines rely on modelling document
correlations to find relevant documents for a given query, while
clustering methods need to determine if the texts given are
similar in semantics. Social Recommendation service systems
aim to comprehend human language queries or commands
and provide the most appropriate recommendation. In legal
and financial domains, assessing the similarity to existing
contracts can help estimate the risk level associated with a
new contract [1]].

The field of computing similarity between texts has made
significant achievements. In this regard, we present a taxon-
omy that centres on the final step of each similarity calculation.
Analyzing the formal aspects of this last step is crucial for
enhancing the interpretability of similarity calculations. It is
worth noting that similarity computation extends beyond its
application in social computing and can be regarded as a
broader concept that is applicable to any domain dealing with
text.

Our proposed taxonomy offers several advantages over ex-
isting methods. Existing taxonomies often tend to focus solely
on technical intricacies like whether they use a transformer
architecture or not, or specific applications [2]. Alternatively,
some methods combine multiple orthogonal characteristics of
similarity [3]. In contrast, our proposed scheme ensures that
each similarity approach falls into one distinct and mutually
exclusive subset. Moreover, this taxonomy can be extended
to accommodate future advancements in similarity computing
techniques. Importantly, the proposed scheme is not based

mailto:Permissions@acm.org
https://doi.org/10.1145/3625007.3627305

on technical details but rather on mathematical formalisation,
providing a robust framework for future developments. In
taxonomizing and analyzing similarity approaches, we make
the following contributions :

e General Problem Definition: We present a clear and
encompassing definition of the similarity problem, along
with a thorough examination of existing similarity
schemes.

o Taxonomy for Text Similarity: We provide the first
taxonomy for text similarity approaches based on formal
data structure.

o Comprehensive Analysis: We conduct a comprehensive
analysis of text similarity approaches, outlining their
advantages and disadvantages, and providing insights into
their application within specific categories.

II. GENERAL FORM OF SIMILARITY

Similarity is widely discussed in social computing litera-
ture [4]], [5]. The general formalisation for similarity calcula-
tion is as follows. Each text unit, denoted as variable u € U,
can be compared using a similarity scheme represented by
a multivariate function s : U,U ... — RF. The number
of variables in the function corresponds to the number of
units being compared, and similarity is measured across k
dimensions. These dimensions include lexicon, syntax, style,
semantics, and pragmatics.

Typically, a similarity scheme concentrates on a specific
dimension of similarity when comparing two pieces of text,
and the general form can be simplified as s : U, U — R.
Previous surveys often classify these schemes based on their
intended dimension of similarity. However, the definitions
for these dimensions remain ambiguous [3[. In light of this,
our primary objective is not to elucidate the intent of each
similarity scheme, but rather to present the mathematical
formulation underlying them.

III. TAXONOMY ON TEXT SIMILARITY COMPUTATION

This section provides a comprehensive taxonomy of sim-
ilarity computing schemes, offering precise definitions for
accurate interpretation and comparison. There are two main
approaches: 1) modelling text units with mathematical models
and computing similarity based on those models, or 2) com-
puting similarity without relying on particular data structures.
Currently, sets, sequences, and real vectors are the primary
representations used for similarity computation in the litera-
ture. The illustration of the four is shown in Fig. [I}

A. Model Texts as Sets

The set model is a conventional approach for representing
texts. Initially, we will explore how set operations can effec-
tively express similarity. Subsequently, we will delve into text
modelling using sets.

The journey from sets to similarity typically involves em-
ploying mathematics. Set operations such as union (A U B),
intersection (A N B), complement (CA), and cardinality (|A|)
are utilized to estimate the similarity between two sets (A

and B). The Jaccard index, developed by Paul Jaccard in
1901, measures similarity by comparing the shared elements
to the total distinct elements in sets. It is widely used for
assessing set-based similarity. Additionally, the Jaccard index
can be applied to bags instead of sets [7] within the context
of set algebra [8]. This is particularly useful in scenarios
where elements can occur multiple times (in bags) rather than
just once (in sets). Various other indices, such as the Jaccard
distance, Sgrensen-Dice index, or Otsuka-Ochiai coefficient,
are summarized in Table [l

TABLE I: From sets to similarity/dissimilarity. Set-based sim-
ilarity measures quantify the intersection of sets, with larger
intersections indicating higher similarity and unique elements
reducing similarity.

Index Formula Relat_l on to
other indices
Jaccard _ |AnB| _ s
index J(4,B) = [AUB] =575
Jaccard
distance 1-J(A,B) 1-J(4,B)
Sgrensen- _ 2|ANnB| _ aJ
Dice index S(A, B) = {4r5] S=137
Otsuka-Ochiai K(A,B) = |ANB| Equivalent to
coefficient [9] YT /1A B cosine similarity

There are multiple approaches to modelling text as sets.
Typically, a text is converted into a set comprising different
features. One of the most straightforward features is an n-
gram, a contiguous sequence of n items from a given text,
such as phonemes, syllables, letters, words, etc. The presence
of shared features between texts enhances the similarity, while
the absence of common features decreases the similarity. For-
mally, a set or bag is created like { z | z is an n-gram in u }.
When the Jaccard index is computed between such bags, we
are actually computing ROUGE-N, the most used variant of
ROUGE [10].

In addition to getting n-grams directly, features can also
be functions of word attributes, such as gloss or neighbour
concepts [2]], [11]. For example, each word can be expanded
using its gloss [12], [14]] or synonyms [[13]] where more n-
grams can be found. In this way, the set models are able to
capture semantic similarity, although these features typically
rely on ontologies that may lack extensive semantic features
beyond taxonomic relationships [11]]. There is still a desire
for a comprehensive feature set encompassing diverse textual
features [3].

B. Model Texts as Sequences

A sequence, also called a string, is an enumerated collec-
tion of symbolised objects where order matters. It contains
members (also called elements, or terms) and repetitions are
allowed. Usually, a sequence is defined as s : Ny <1 — &,
where X is the set of all possible members of the sequence,
and L is the length of the sequence. This function maps
from positive natural numbers, the positions of elements in
the sequence, to the elements at each position.

TABLE 1II: From sequences to similarity/dissimilarity.
Sequence-based similarity requires specialised algorithms
from information/computer science. The time complexity of
computing each value between two sequences is illustrated.

Index Time Relation to
complexity other indices
Longest
common O(|al x |b]) A substring
subsequence is always a
Longest subsequence
common O(la| + |b])
substring
Edit
distance O(jal x [b]))

There are various quantities to measure sequence similarity.
One is to find the longest common subsequence (LCS) [16],
where subsequences can be non-consecutive. Another method
is to find the longest common substring, which requires
consecutive token positions [[17]. Edit distance is widely used
and involves atomic operations like substitution, insertion, and
deletion [[18]]. Table |l lists the current best time complexities
for computing these quantities using specific algorithms.

Current sequence representations of texts are simple because
they are sequences by nature. Converting a text into a sequence
often resorts to tokenization. Common tokens are characters,
words (separated by spaces), or sub-words [[19]]. In some cases,
rules are done to tokens, for example, “u.s.” may be treated
as the same token as “US”.

The different similarity schemes for sequence models vary
in how texts are modelled as sequences and which calcula-
tion (LCS, longest common substring, or edit distance) they
employ. ROUGE-L disregards case and tokenizes a text by
spaces to obtain a sequence of tokens, subsequently applying
LCS [10]]. Greedy string tiling [17] uses the same tokenization
as ROUGE-L and applies the longest common substring
approach. Word Error Rate (WER) also adopts the same tok-
enization and utilizes edit distance [21]]. TER (Translation Edit
Rate) is an evolution of WER that allows the consideration of
a phrase as a single token to minimize the distance [23[]. ITER
represents an improved version of TER [25] where tokens
are stemmed words rather than the original uncased words.
CharacTER also utilizes edit distance but tokenizes the text
into cased characters [26].

C. Model Texts as Vectors

The vector model is sometimes called feature, embedding
etc. Similarity calculation between vectors can take advantage
of numerous operations in real vector spaces. In the following,
we first discuss how similarity between vectors can be calcu-
lated, and then discuss how to represent a unit of text using a
vector.

Converting texts into a vector is not a secret skill in NLP,
therefore computing the similarity between vectors is a more
general problem with widespread applications in other fields
such as computer vision. Some researchers [2]], [3[], [28]
examined various formulas, including standard mathematical

TABLE III: From vectors to similarity/dissimilarity. Vector-
based similarity measures quantify the inner product between
vectors, with larger inner product indicating higher similarity.

Index Formula Relat}on. to
other indices
Inner e bl _ :
product (a, b) =PI~ =1 — (a,b)
Cosine (a,b) Equivalent to
) a’ o Q
Sim. Tal[b] Ped{son
correlation [29]
Jaccard — (a,b) o L
index | /@0 = Gprp =147
Sgrensen- — 2(ab) Y
Dice index S(a,b) = Ja[?>+[b|? §= 1+J
Overlap ~ (ahb) o s
index min(Jal?,[b[?) =117
2
L2-norm lla b =Bl 7 g)
Cosine |_ (@b
distance la|[b] -

Tfor unit vectors

operations and others specifically designed similarity comput-
ing. The inner product is the most straightforward operation
on two vectors. Various similarity calculations can be derived
based on the inner product. For example, dividing the inner
product by modulo of the vectors results in cosine, and
changing the denominators can result in Jaccard, Sgrensen-
Dice, and Overlap formulation for real vectors, as shown in
Table

Besides inner products, cross-covariance between vectors
can serve as a statistical measure of similarity. Typically, three
types of correlations are computed: Pearson correlation (r),
Kendall rank correlation (7), and Spearman correlation (p).
Pearson correlation is equivalent to the cosine of the angle
between two vectors [29]. Kendall correlation and Spearman
correlation, on the other hand, are nonparametric tests that
assess the strength of dependence and the degree of association
between two vectors, respectively [30]. The similarity between
vectors can also be assessed using distance measures. One
commonly used distance function is the Euclidean distance
or L%-norm, which is differentiable and convex but not scale
invariant. However, differences in measurement units can
introduce biases in distances, and vector normalization is often
employed as a solution. Despite its widespread usage, the
Euclidean distance is not well-suited for measuring vectors
in high-dimensional spaces due to the concentration of norm
or the curse of dimensionality [31]], [32]]. A popular distance
variant is the L'-norm which is preferred for outlier-rich data
and provides sparser estimates. Other p-norms offer robustness
to outliers. Different weights can be applied to dimensions,
such as Canberra distance [33]. L'-norm is equivalent to
Hamming distance for bit vectors [34].

Next, we discuss how texts are modelled as vectors. Existing
vector models are able to build a vector from either a word,
phrase, sentence, paragraph or even larger units. Word vector
models aim to capture information about each word, including
its meaning, part of speech, and other attributes, using a
single vector representation. The most widely used models

Set model
Sequence model
Vector model
End-to-end

Frequency

ad

SN N

980 1985 1990 1995 2000

2005 2010 2015 2020

Year

Fig. 2: Text similarity computing is an evolving field with changing popularity of different modeling approaches. Before 2010,
set and vector modeling were popular, but in the past decade, vector modeling has gained widespread adoption. End-to-end
computing schemes have also become increasingly popular in recent years.

for word representation are Word2Vec, GloVe, and FastText.
Word2Vec takes the distributional semantics that words with
similar meanings tend to appear in similar contexts. Thus, A
shallow neural network is trained to capture information from
the context of other words surrounding a given word to predict
a vector, which is believed to preserve latent linguistic relation-
ships [36] and semantic similarity [37] between words. While
also taking distributional semantics, GloVe globally builds a
global word co-occurrence matrix on a corpus [38]]. FastText
includes characters in the vocabulary set and employs a skip-
gram approach [[19] for training the character representation.
This enables it to capture the morphological structure of words
and effectively handle out-of-vocabulary words using their
characters or subunits.

The vectors at sentence or document level can be obtained
from word vectors [28], [39]], including taking an average
of the word vectors or the dimension-wise max/min (Vector
Extrema, [40]). Simple averaging assigns equal weights to
both important and unimportant words. However, considering
extreme values along each dimension can help disregard
common words and prioritize informative ones. To preserve
more information, one can assign TF-IDF weights during the
averaging process. TF-IDF (term frequency-inverse document
frequency) is a widely used vectorisation method [46[—[48]]
that does not originate from distributional semantics. Instead,
word frequencies in the text can be informative. In the space it
defines, each term in the vocabulary is an orthonormal basis.
The modulo length of an orthonormal basis is determined by
the product of two values: how many times a word appears in a
document, and the logarithm of inverse document frequency of
the word across a set of documents. Some variations of TF-IDF
are taking n-grams as terms [49]], or using time to increase the
IDF [50], where a term has a low IDF and high discrimination
when it is first introduced, and the IDF decays as the term’s
usage increases. TF-IDF has some specific version names,
like CIDEr [51] when used in image captioning comparison.
Consider the frequency of function word only can indicate
authorship attribution [52].

D. End-to-end Similarity Computing

Some similarity measures are not limited to specific rep-
resentations like sets, bags, or vectors. Instead, they are only
governed by a general formalisation of similarity computation.

In the following discussion, we describe representative end-
to-end schemes in a rough chronological order to illustrate
their evolution. Early works focused on analyzing specific
knowledge sources of concepts [53]]. Subsequently, methods
began leveraging distributional semantics assumptions, more
powerful computing resources, and pretrained contextualized
embeddings [56]]. More recently, end-to-end neural models
have been utilized for modelling similarity as well [121].

Ontology measures are specifically useful for term (word)
similarity. They effectively capture human-annotated infor-
mation, encompassing term meanings and semantic relation-
ships [11]]. These measures determine similarity by leverag-
ing knowledge sources and information content indices (IC),
where higher IC values indicate greater specificity [53]]. Ex-
isting similarity formulas in ontology and IC follow a general
form: s(A, B) = (1+1C1(A, B)-k'°2(A, B))~!, where k is
a hyperparameter tuned for different IC calculations [|54].

When it comes to larger text units like sentences, composite
methods are developed. These methods extract customized
features, including bags of words, sentence length, and word
embeddings, from the text. A clear composition rule is then
used to compute similarity based on these features. Although
initially developed as context-free metrics for sentence similar-
ity evaluation [6], many composite methods are occasionally
overlooked in the textual similarity community [2]]. These
methods typically rely on unambiguous features from texts
and may avoid using word embeddings to avoid potential
uninterpretable mistakes, as they are not definitive labels.
However, when contextualised embedding starts to show great
potential in various NLP tasks [55], many similarity schemes
use contextualised embeddings as their main features. For ex-
ample, BERTScore measures soft overlap between two token-
aligned texts [56]. To compute BERTScore, contextualised
word embeddings are generated from each text using BERT
model [57], and the composition rule is to greedily maximize
the cosine similarity between embeddings from two texts [58]].

When a substantial amount of annotated similarity exists
between two texts, one effective approach is to employ neural
networks as regressors. CNN [60], LSTM [61]]), transform-
ers [64], [66], and other techniques are commonly utilized.
Furthermore, the performance of these models can be en-
hanced by utilizing a larger corpus, which underscores the
significance of constructing an ideal corpus. However, neural

models tend to be black-box models, making them challenging
to interpret.

IV. ANALYSIS

This section will evaluate the pros and cons of the four
categories, followed by a discussion of their appropriate ap-
plication scenarios.

A. Advantages and Disadvantages

Employing mathematical models as the foundation for com-
puting text similarity is a double-edged sword, possessing
both immense potential and inherent limitations. Mathemat-
ical models, including sets, sequences, and vectors, provide
standardized approaches, efficient algorithms, and scalability
advantages in the context of text similarity computation. They
enable rapid computations and effective handling of large-scale
similarity tasks. However, relying solely on a single mathemat-
ical model can restrict the ability to capture diverse types of
text similarity, potentially resulting in suboptimal performance
and a loss of specialized capabilities. For instance, vector
models may struggle with nuances such as shifts in meaning
or irony. The choice of data structure depends on specific task
requirements, available resources, and the trade-offs between
efficiency, robustness, and performance.

Set-based models efficiently apply set operations, but ignore
word order and rely solely on word presence. Sequence-based
models preserve word order and context, but small changes can
significantly impact similarity calculations, requiring complex
algorithms and being computationally expensive. Vector mod-
els, like word embeddings, capture semantic relationships and
enable similarity measures, but fixed-length representations
may hinder long-range dependencies and encounter dimen-
sionality challenges.

End-to-end approaches offer the advantage of simplifying
modelling by eliminating the need for explicit feature extrac-
tion and being flexible with data structures. They excel in
specialized and contextualized tasks, particularly in catego-
rizing fine-grained topics in short texts. However, they can
be computationally resource-intensive, limiting their applica-
bility in scenarios with constraints. While they may achieve
higher accuracy, there is a risk of overfitting and limited
generalizability in diverse scenarios. Moreover, end-to-end
schemes often have high time complexity and computational
expense, especially in tasks involving one-to-many mapping
like topic identification. The choice between a mathematical
model and an end-to-end approach for text similarity depends
on task requirements, available computational resources, data
availability, and the need for specialized flexibility. Please refer
to Table [[V]for a comparison and Fig. [2|for the popularity shift
over time.

B. Applications

In social computing, various tasks demand analysis of
textual data to extract meaningful insights and drive decision-
making. Text similarity computation plays a pivotal role in
tasks such as online community management, social network

analysis, recommender systems, crowdsourcing, and more. For
each task in social computing, selecting the most appropriate
text similarity computation is crucial. Factors such as the
nature of the task and the characteristics of the textual data
influence the choice between a set model, sequence model,
vector model, or end-to-end computation. By examining each
task’s requirements, we discuss the best-fit approach for the
following tasks in the following sections.

a) Community Detection: In social network analysis,
community detection is a task that involves identifying co-
hesive and densely connected subgroups within a network.
Text similarity plays a crucial role in this process by com-
paring textual attributes such as user profiles, descriptions, or
communication patterns. Vector models tend to be effective.
By representing these attributes as vectors using techniques
like word embeddings or document embeddings, similarity
can be computed using measures like cosine similarity. This
approach allows for capturing semantic relationships and
contextual meaning in the text. By applying text similarity
analysis, researchers can uncover clusters of users with similar
interests, identify influential users, and understand the com-
munity structure within a social network, as seen in Twitter
network analyses. Overall, text similarity analysis enhances the
study of social network structure, relationships, and dynamics,
providing meaningful insights for decision-making.

b) Online Community Management: Moderating discus-
sions, resolving conflicts, and promoting user engagement
are essential for fostering online community growth and en-
hancing positive user experiences. Text similarity can aid in
detecting duplicate or similar posts, comments, or discussions,
enabling community managers to efficiently identify repetitive
content or spam and merge similar discussions. Set models,
treating each post or comment as a set of words or tokens,
can effectively identify duplicates. Set similarity metrics like
Jaccard similarity or cosine similarity measure word overlap or
similarity between sets. For instance, in an online gaming com-
munity, text similarity techniques can help identify multiple
instances of the same question posted across different threads.
Community managers can swiftly recognize these duplicates
and consolidate them into a single thread, reducing redundancy
and enhancing community organization.

¢) Recommender Systems: Recommender systems aim to
provide personalized recommendations to users in various do-
mains such as e-commerce, social media, and content stream-
ing services. Text similarity analysis can compare textual
representations of items or user preferences. By measuring the
similarity between item descriptions or user profiles, recom-
mender systems can identify similar items or users, leading to
accurate recommendations. Vector models, again, are effective
in this context. For instance, in music streaming platforms, text
similarity can be employed to analyze song metadata and user
listening histories. By calculating the similarity between songs
represented as vectors based on genre, lyrics, or other textual
attributes, the recommender system can suggest similar songs
to users who have shown interest in a particular music style,
according to vector distances like Euclidean distance.

TABLE IV: Advantages and Disadvantages of Text Similarity Modeling Approaches. Among the surveyed schemes, 55%
convert linguistic units to some form of representation, including sets (8%), sequences (15%), or real vectors (32%). The
remaining 45% take an end-to-end perspective to return real numbers. The unit of texts can be words (90%), sub-words, or
characters (< 10%). 70% of the schemes came out after 2010.

Approach Advantages Disadvantages Schemes in Literature

Set Simplicity, Robustness Loss of sequence in- n-gram [10], [67], 68|, Lesk [[12], [[13]], Wiki-feature [14]

Modelling to minor changes, Ef- formation, Loss of fre-
ficiency quency information

Sequence Preserves sequence in- Increased complexity, ROUGE-L [10], Greedy string tiling [17], Jaro-Winkler dis-

Modelling formation, Contextual Sensitivity to varia- tance [20], WER [21], PER [22], TER [23], ITER [25], CDER [24],
understanding tions characTER [26], EED [27]

Vector Efficient computation, Dimensionality, Function word frequency [52], TF-IDF [46]-[48], CIDEr [51], Word

Modelling Rich semantic repre- Fixed-length order [69]], Word2vec [35], GloVe [38|], FastText [19], LSI/LSA [39],
sentation, Enables var- representation [70], HAL [71], LDA [72], ESA [73]], Dependency-based models [74],
ious similarity mea- [[75]], Tree kernels [76]-[82], Word-Alignment models [83]-[85], Doc-
sures ument embedding [40]-[45], InferSent [86], Quick-Thought [87],

USE [388]

End-to-end Simplicity, Flexible Lack of interpretabil- NGD [89], IC [53], [54], [90]-[94], Lexico-syntactic patterns [95],

Modelling representation ity, Data requirements, PORT [96], LEPOR [97], [98], GTM [99], MEANT [100]-[103],
learning, Task-specific ~Limited control over Greedy Emb. Matching [[104], WMD [105]-[107], BERTScore [56],
optimization similarity computation ~SIMILE [108|], MoverScore [109], Q-Metrics [110], BEER [111],

[112]), ESIM [58]], [113]], Neural Network Methods in General [59]—

[66], [114]-[120], RUSE [121]

d) Crowdsourcing: Crowdsourcing involves outsourcing
tasks or gathering information from a large crowd or online
community. Text similarity can identify redundant or similar
contributions from participants. By measuring text similarity
between user-generated content, such as responses or solu-
tions, organizers can group similar responses together, assess
the consensus, and avoid duplication. Both the set models and
ontology-based end-to-end approaches can be useful. For ex-
ample, when participants are asked to categorize images, these
models can cluster similar image descriptions provided by
users. This helps in identifying patterns or themes within the
collected data, facilitating the overall categorization process.

e) Online Collaboration: Online collaboration involves
multiple individuals working together remotely on shared
projects, documents, or tasks. It includes activities like co-
authoring, content editing, and real-time communication. Text
similarity can be helpful in detecting overlapping or duplicate
content within collaborative documents. By measuring the text
similarity between sections or paragraphs, collaborators can
identify redundant information, merge similar contributions,
and maintain document consistency. In a team working on a
shared document, text similarity techniques can be applied to
compare the content of different sections. Sequence models,
such as sequence alignment or edit distance, are often suitable
for this purpose. By representing sections or paragraphs of
collaborative documents as sequences, the similarity between
sections can be effectively measured and analyzed.

f) Influence Propagation: Influence propagation involves
studying the spread of information, opinions, or behaviours
through social networks. It aims to understand how influence
or trends propagate and impact individuals within a network.
Text similarity analysis provides insights into the spread of
information and helps identify influential users by assessing

the similarity between messages or posts. Vector models
are typically well-suited. For example, when studying the
diffusion of information on social media, each tweet or post
can be first represented in a vector, and similarity between
tweets pertaining to a specific event or topic can be obtained.

g) Topic Detection on Social Media: This task involves
analyzing data from social media platforms to collect some
particular topic-related posts. It encompasses tasks such as
sentiment analysis, topic modelling, and trend detection. Text
similarity can group similar posts or comments together.
By measuring text similarity between social media content,
analysts can identify conversations, discussions, or trends
related to specific topics, enabling more targeted analysis
and understanding of user sentiments. The vector models are
commonly applied, where social media content are represented
as vectors, e.g., sentence embeddings. However, when there is
sufficient annotation available, the end-to-end approach can be
more efficient in detecting the particular topic-related posts. It
eliminates the need for explicit feature extraction and considers
the overall characteristics of the posts, resulting in improved
efficiency and effectiveness in analyzing topic-related content.
For example, in a social media analytics project focused on a
specific product launch, text similarity techniques can be used
to group user-generated content related to the product.

V. CONCLUSION

In our systematic review of approximately 70 similarity
computation schemes, we categorized them into four types:
sets, sequences, real vectors, and end-to-end methods. We ob-
served that vector models and end-to-end methods have been
particularly popular in the past decade, with vector models
demonstrating better efficiency and end-to-end methods show-
casing higher performance in specialized tasks. However, these
methods are more challenging to interpret compared to simpler

set and sequence models. Understanding the computation of
text embedding and similarity in complex vector models and
end-to-end methods remains a topic for future research.

Acknowledgment. This research is funded in part by the
Singapore University of Technology and Design under grant
RS-MEFAI-00005-R0201.

[10]
(11]

[12]

[13]

[14]

[15]
[16]
(17]
(18]
[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]

[29]

REFERENCES

V. Rawte, A. Gupta, and M. J. Zaki, “A comparative analysis of temporal
long text similarity: Application to financial documents,” MIDAS, 2021.
D. Chandrasekaran and V. Mago, “Evolution of semantic similarity—a
survey,” ACM Comput. Surv., 2021.

D. Bir, T. Zesch, and I. Gurevych, “Composing measures for computing
text similarity,” Tech. Rep., 2015.

Y. Zhang, X. Wang, Y. Sakai, and T. Yamasaki, “Measuring similarity
between brands using followers’ post in social media,” in MMAsia, 2019
M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
KDD,2004

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” ACL, 2002.

J. Leskovec, A. Rajaraman, and J. D. Ullman, Finding Similar Items,
2022.

L. E. Bertossi, G. Gottlob, and R. Pichler, “Datalog: Bag semantics via
set semantics,”’, 2018.

Y. Otsuka, “The faunal character of the japanese pleistocene marine
mollusca, as evidence of climate having become colder during the
pleistocene in japan,” Biogeogr. Soc. Japan, 1936.

C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, 2004.

D. Séanchez, M. Batet, D. Isern, and A. Valls, “Ontology-based semantic
similarity: A new feature-based approach,” ESWA, 2012.

M. Lesk, “Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone,” in
SIGDOC, 1986.

S. Banerjee and T. Pedersen, “Extended gloss overlaps as a measure of
semantic relatedness,” in IJCAI, 2003.

Y. Jiang, X. Zhang, Y. Tang, and R. Nie, “Feature-based approaches to
semantic similarity assessment of concepts using wikipedia,” IP&M,
2015.

P-F. Marteau, “Sequence Covering Similarity for Symbolic Sequence
Comparison,” 2018.

L. Allison and T. I. Dix, “A bit-string longest-common-subsequence
algorithm,” IPRL, 1986.

M. J. Wise, “Yap3: Improved detection of similarities in computer
program and other texts,” SIGCSE Bull., 1996.

V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Sov. Phys. Dokl., 1966.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” TACL, 2017.

W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage,” in Proceedings of the
Section on Survey Research, 1990.

K.-Y. Su, M.-W. Wu, and J.-S. Chang, “A new quantitative quality
measure for machine translation systems,” in COLING, 1992.

C. Tillmann, S. Vogel, H. Ney, A. Zubiaga, and H. Sawaf, “Accelerated
DP based search for statistical translation,” in EUROSPEECH, 1997.
M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A study
of translation edit rate with targeted human annotation,” in AMTA, 2006.
G. Leusch, N. Ueffing, and H. Ney, “CDER: Efficient MT evaluation
using block movements,” in EACL, 2006.

J. Panja and S. K. Naskar, “ITER: Improving translation edit rate through
optimizable edit costs,” in WMT, 2018.

W. Wang, J.-T. Peter, H. Rosendahl, and H. Ney, “CharacTer: Translation
edit rate on character level,” in WMT, 2016.

P. Stanchev, W. Wang, and H. Ney, “EED: Extended edit distance
measure for machine translation,” in WMT, 2019.

A. B. Sai, A. K. Mohankumar, and M. M. Khapra, “A survey of
evaluation metrics used for nlg systems,” ACM Comput. Surv., 2022.
R. J. Rummel, “The vector approach,” in Understanding correlation,
1976, ch. 5.

(30]
[31]
[32]
(33]

[34]
(35]

[36]
[37]
(38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]
(53]

[54]

[55]
[56]

(571

[58]

[59]
[60]

[61]

[62]

D. J. Colwell and J. R. Gillett, “Spearman versus kendall,” Math. Gaz.,
1982.

P. Demartines, “Analyse de données par réseaux de neurones auto-
organisés,” Ph.D. dissertation, 1994.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
“nearest neighbor” meaningful?” in /CDT, 1999.

G. Jurman, S. Riccadonna, R. Visintainer, and C. Furlanello, “Canberra
distance on ranked lists,” in NIPS workshop, 2009.

J. M. Phillips, “L7-distances,” 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR, 2013.

T. Schnabel, 1. Labutov, D. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in EMNLP, 2015.

T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in contin-
uous space word representations,” in NAACL, 2013.

J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in EMNLP, 2014.

T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction, and represen-
tation of knowledge.” Psychol. Rev., 1997.

G. Forgues, J. Pineau, J.-M. Larchevéque, and R. Tremblay, “Bootstrap-
ping dialog systems with word embeddings,” in Nips workshop, 2014.

O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning
generic context embedding with bidirectional LSTM,” in CoNLL, 2016.
J. Tissier, C. Gravier, and A. Habrard, “Dict2vec : Learning word
embeddings using lexical dictionaries,” in EMNLP, 2017.

M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of
sentence embeddings using compositional n-gram features,” in NAACL,
2018.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013.

H. P. Luhn, “A statistical approach to mechanized encoding and search-
ing of literary information,” IBM J. Res. Dev., 1957.

K. Sparck Jones, A Statistical Interpretation of Term Specificity and Its
Application in Retrieval, 1988.

J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in /ICML, 2003.

O. Shahmirzadi, A. Lugowski, and K. Younge, “Text similarity in vector
space models: A comparative study,” in /ICMLA, 2019.

B. Kelly, D. Papanikolaou, A. Seru, and M. Taddy, “Measuring techno-
logical innovation over the long run,” AER Insights, 2021.

R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-
based image description evaluation,” in CVPR, 2015.

L. P. Dinu and M. Popescu, “Ordinal measures in authorship identifica-
tion,” in Proc. SEPLN, 2009.

G. Zhu and C. A. Iglesias, “Computing semantic similarity of concepts
in knowledge graphs,” TKDE, 2017.

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A
spatially and temporally enhanced knowledge base from wikipedia,” Al,
2013.

I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language
model for scientific text,” in EMNLP-IJCNLP, 2019.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with BERT,” 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in NAACL, 2019.

N. Mathur, T. Baldwin, and T. Cohn, “Putting evaluation in context:
Contextual embeddings improve machine translation evaluation,” in
ACL, 2019.

Z. Wang, H. Mi, and A. Ittycheriah, “Sentence similarity learning by
lexical decomposition and composition,” in COLING, 2016.

Y. Shao, “HCTI at SemEval-2017 task 1: Use convolutional neural
network to evaluate semantic textual similarity,” in SemEval, 2017.

N. H. Tien, N. M. Le, Y. Tomohiro, and I. Tatsuya, “Sentence modeling
via multiple word embeddings and multi-level comparison for semantic
textual similarity,” Ip& M, 2019.

K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” in ACL,
2015.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]
[76]
(771
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]
[90]

[91]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and 1. Polosukhin, “Attention is all you need,” in NIPS,
2017.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“TinyBERT: Distilling BERT for natural language understanding,” in
Findings EMNLP, 2020.

H. Shimanaka, T. Kajiwara, and M. Komachi, “Machine translation
evaluation with BERT regressor,” 2019.

H. Kane, M. Y. Kocyigit, A. Abdalla, P. Ajanoh, and M. Coulibali,
“NUBIA: NeUral based interchangeability assessor for text generation,”
in EvalINLGEval, 2020.

C. Lyon, J. Malcolm, and B. Dickerson, ‘“Detecting short passages of
similar text in large document collections,” in EMNLP, 2001.

C. Lyon, R. Barrett, and J. Malcolm, “A theoretical basis to the
automated detection of copying between texts, and its practical imple-
mentation in the ferret plagiarism and collusion detector,” Plagiarism:
Prevention, Practice and Policies, 2004.

V. Hatzivassiloglou, J. L. Klavans, and E. Eskin, “Detecting text simi-
larity over short passages: Exploring linguistic feature combinations via
machine learning,” in EMNLP/VLC, 1999.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JASIS, 1990.

K. Lund and C. Burgess, “Producing high-dimensional semantic spaces
from lexical co-occurrence,” Behav. Res. Methods Instrum. Comput.,
1996.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., 2003.

E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” in IJCAI, 2007.

E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and A. Soroa,
“A study on similarity and relatedness using distributional and WordNet-
based approaches,” in NAACL, 2009.

O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in
ACL, 2014.

A. Moschitti, D. Pighin, and R. Basili, “Tree kernels for semantic role
labeling,” CL, 2008.

A. Severyn, M. Nicosia, and A. Moschitti, “Learning semantic textual
similarity with structural representations,” in ACL, 2013.

A. Moschitti, “Efficient convolution kernels for dependency and con-
stituent syntactic trees,” in ECML, 2006.

M. Collins and N. Duffy, “New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron,” in
ACL, 2002.

S. Amir, A. Tanasescu, and D. A. Zighed, “Sentence similarity based
on semantic kernels for intelligent text retrieval,” JIIS, 2017.

D. Bir, C. Biemann, I. Gurevych, and T. Zesch, “UKP: Computing
semantic textual similarity by combining multiple content similarity
measures,” in SemEval, 2012.

F. Sari¢, G. Glavas, M. Karan, J. gnajder, and B. Dalbelo Basic,
“TakeLab: Systems for measuring semantic text similarity,” in SemEval,
2012.

M. A. Sultan, S. Bethard, and T. Sumner, “DLS@CU: Sentence simi-
larity from word alignment,” in SemEval, 2014.

T. Kajiwara and M. Komachi, “Building a monolingual parallel corpus
for text simplification using sentence similarity based on alignment
between word embeddings,” in COLING, 2016.

D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-
2017 task 1: Semantic textual similarity multilingual and crosslingual
focused evaluation,” in SemEval, 2017.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” in EMNLP, 2017.

L. Logeswaran and H. Lee, “An efficient framework for learning
sentence representations,” in /CLR, 2018.

D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. St. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar, B. Strope, and
R. Kurzweil, “Universal sentence encoder for English,” in EMNLP,
2018.

R. L. Cilibrasi and P. M. Vitanyi, “The google similarity distance,”
TKDE, 2007.

P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” in IJCAI, 1995.

J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” in CICLing, 1997.

[92] D. Lin, “An information-theoretic definition of similarity,” in /CML,

1998.

D. Sanchez and M. Batet, “A semantic similarity method based on

information content exploiting multiple ontologies,” ESWA, 2013.

J.-B. Gao, B.-W. Zhang, and X.-H. Chen, “A wordnet-based semantic

similarity measurement combining edge-counting and information con-

tent theory,” Eng. Appl. Artif. Intell., 2015.

D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring semantic simi-

larity between words using web search engines,” in WWW, 2007.

B. Chen, R. Kuhn, and S. Larkin, “PORT: a precision-order-recall MT

evaluation metric for tuning,” in ACL, 2012.

A. L. F. Han, D. F. Wong, and L. S. Chao, “LEPOR: A robust evaluation

metric for machine translation with augmented factors,” in COLING,

2012.

A. L.-F. Han, D. F. Wong, L. S. Chao, L. He, and Y. Lu, “Unsupervised

quality estimation model for english to german translation and its

application in extensive supervised evaluation,” Sci. World J., 2014.

[99] J. P. Turian, L. Shen, and 1. D. Melamed, “Evaluation of machine
translation and its evaluation,” in MT Summit IX, 2003.

[100] C.-k. Lo and D. Wu, “MEANT: An inexpensive, high-accuracy, semi-
automatic metric for evaluating translation utility based on semantic
roles,” in ACL, 2011.

[101] C.-k. Lo, A. K. Tumuluru, and D. Wu, “Fully automatic semantic MT
evaluation,” in WMT, 2012.

[102] C.-k. Lo and D. Wu, “Unsupervised vs. supervised weight estimation
for semantic MT evaluation metrics,” in SSS7-6, 2012.

[103] C.-k. Lo, M. Beloucif, M. Saers, and D. Wu, “XMEANT: Better
semantic MT evaluation without reference translations,” in ACL, 2014.

[104] V. Rus and M. Lintean, “A comparison of greedy and optimal assess-
ment of natural language student input using word-to-word similarity
metrics,” in BEA, 2012.

[105] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in ICML, 2015.

[106] J. Chow, L. Specia, and P. Madhyastha, “WMDO: Fluency-based word
mover’s distance for machine translation evaluation,” in WMT, 2019.

[107] H. Echizen’ya, K. Araki, and E. Hovy, “Word embedding-based
automatic MT evaluation metric using word position information,” in
NAACL, 2019.

[108] J. Wieting, T. Berg-Kirkpatrick, K. Gimpel, and G. Neubig, “Beyond
BLEU:training neural machine translation with semantic similarity,” in
ACL, 2019.

[109] W. Zhao, M. Peyrard, F. Liu, Y. Gao, C. M. Meyer, and S. Eger,
“MoverScore: Text generation evaluating with contextualized embed-
dings and earth mover distance,” in EMNLP-IJCNLP, 2019.

[110] P. Nema and M. M. Khapra, “Towards a better metric for evaluating
question generation systems,” in EMNLP, 2018.

[111] M. Stanojevi¢ and K. Sima’an, “BEER: BEtter evaluation as ranking,”
in WMT, 2014.

[112] ——, “Fitting sentence level translation evaluation with many dense
features,” in EMNLP, 2014.

[113] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen,
“Enhanced LSTM for natural language inference,” in ACL, 2017.

[114] N. Sharif, L. White, M. Bennamoun, and S. A. Ali Shah, “Learning-
based composite metrics for improved caption evaluation,” in ACL, 2018.

[115] N. Sharif, L. White, M. Bennamoun, and S. A. A. Shah, “Nneval:
Neural network based evaluation metric for image captioning,” in ECCV,
2018.

[116] H.He and J. Lin, “Pairwise word interaction modeling with deep neural
networks for semantic similarity measurement,” in NAACL, 2016.
[117] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” in /CLR, 2015.

[118] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” in EMNLP, 2015.

[119] A. Parikh, O. Tdckstrom, D. Das, and J. Uszkoreit, “A decomposable
attention model for natural language inference,” in EMNLP, 2016.
[120] I. Lopez-Gazpio, M. Maritxalar, M. Lapata, and E. Agirre, “Word n-
gram attention models for sentence similarity and inference,” ESWA,

2019.

[121] H. Shimanaka, T. Kajiwara, and M. Komachi, “RUSE: Regressor using
sentence embeddings for automatic machine translation evaluation,” in
WMT, 2018.

[93]

[94]

[95]
[96]

(971

(98]

	Introduction
	General Form of Similarity
	Taxonomy on Text Similarity Computation
	Model Texts as Sets
	Model Texts as Sequences
	Model Texts as Vectors
	End-to-end Similarity Computing

	Analysis
	Advantages and Disadvantages
	Applications

	Conclusion
	References

