
A Transformer-based Framework for POI-level
Social Post Geolocation

Menglin Li1[0000−0002−7890−7636], Kwan Hui Lim1[0000−0002−4569−0901],
Teng Guo2[0000−0001−6604−475X], and Junhua Liu1,3[0000−0003−4477−7439]

1 Singapore University of Technology and Design, Singapore
2 Dalian University of Technology, China

3 Forth AI, Singapore
menglin li@mymail.sutd.edu.sg, kwanhui lim@sutd.edu.sg,

teng.guo@outlook.com, j@forth.ai

Abstract. POI-level geo-information of social posts is critical to many
location-based applications and services. However, the multi-modality,
complexity, and diverse nature of social media data and their platforms
limit the performance of inferring such fine-grained locations and their
subsequent applications. To address this issue, we present a transformer-
based general framework, which builds upon pre-trained language models
and considers non-textual data, for social post geolocation at the POI
level. To this end, inputs are categorized to handle different social data,
and an optimal combination strategy is provided for feature represen-
tations. Moreover, a uniform representation of hierarchy is proposed to
learn temporal information, and a concatenated version of encodings is
employed to capture feature-wise positions better. Experimental results
on various social media datasets demonstrate that the three variants of
our proposed framework outperform multiple state-of-art baselines by a
large margin in terms of accuracy and distance error metrics.

Keywords: Location Prediction · Geolocation · Social Media · Twitter
· Transformer

1 Introduction

Knowing the posting location of social media data is important for many useful
applications, including local event/place recommendations [8,24], location-based
advertisements [6, 11], emergency location identification and disaster response
[23,44]. However, geotagged social posts are very limited as less than 1% of tweets
are labeled with geo-coordinates [1]. This constraint motivates our research on
geolocation, which is a topic that has received significant attention in the past
decade. However, most prior studies concentrate on user geolocation, which is
estimating the home location of users [34,39,45,46]. This type of geo-information
is insufficient for applications like emergency location identification and natural
disaster response [21], which require the location of individual posts. Hence,
in this paper, we focus on the problem of social post geolocation to infer the
locations of individual posts.
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For social post geolocation, previous efforts typically aim at inferring loca-
tions at the city level [2, 21, 43]. Although there is good performance at the
city level, location information at such a coarse-grained level is still insufficient
for the various applications mentioned earlier. While some researchers studied
the task of geo-coordinates estimation, it is challenging to achieve high accu-
racy [28, 31]. In real-life scenarios, semantic toponyms are more practical and
understandable compared to numerical latitude and longitude [42]. Therefore,
we study the problem of social post geolocation at the Point-Of-Interest (POI)
level, a fine-grained semantic level.

However, Social Post Geolocation at the POI level is a challenging prob-
lem due to the complexity, multi-modality, and diverse nature of social media
data and their platforms. Firstly, the user-generated textual content is short,
free-form, and often noisy, containing acronyms, misspellings, and special to-
kens. It is non-trivial to understand such complex text precisely for location
estimation. Secondly, there are other non-textual contents such as time, social
networks, images, and videos, which can be used for this task but also lead to
the multi-modality issue. The ability to represent and fuse different data types is
vital for geolocation. Lastly, it is increasingly important to develop a geolocation
framework with a generalization ability to deal with the emergence of diverse
social platforms, like photo-sharing and micro-blogging platforms. Many works
focus on a single social platform with specific inputs, thus limiting their perfor-
mance on other social platforms due to the difference in data fields. For better
generalizability across platforms, some approaches utilize text content solely for
geolocation but at the expense of missing out on other non-textual content and
limiting performance.

To address these limitations, we present a transformer-based model, named
transTagger, for POI-level social post geolocation, which is a general framework
that builds upon the Bidirectional Encoder Representations from Transformers
(BERT) model with good generalization ability across different social platforms
for accurate fine-grained location inference. The main contributions of this work
can be summarized as follows:

– We design a general categorization to tackle the multi-modality and diverse
nature of social media data and their platforms and provide four datasets
with ground truth covering two cities and two platforms.

– We fuse features and learn their correlations using transformer encoders with
a concatenated version of positional encodings, along with a novel temporal
representation to provide an optimal combination strategy of representations
for multi-modality fusion. We denote this model, transTagger.

– We construct two additional variants, hierTagger and mtlTagger, by incorpo-
rating the hierarchy of locations into transTagger, and experimental results
demonstrate that our models outperform state-of-the-art baselines by a con-
siderate margin in terms of accuracy and distance error metrics.1

1 Our code and dataset are made publicly available at
https://github.com/lazylml/transTagger.
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The rest of the paper is organized as follows. In Section 2, we review the
critical related work in the geolocation field and briefly introduce hierarchical
classification techniques. In Section 3, we first present the problem formulation
and then describe our proposed model transTagger and two variants in detail.
Then Section 4 introduces the experimental setting, while Section 5 presents and
discusses our experimental results. Following that, we summarize and conclude
this paper in Section 6.

2 Related Work

In this section, we review two main categories of work that are related to our
research, namely social post geolocation and hierarchical geolocation works.

2.1 Post Geolocation

Post geolocation focuses on estimating the originating locations of social posts.
Unlike user geolocation, which leverages a user’s entire posting history, post ge-
olocation considers only an individual post or tweet and uses that as input. For
example, the work [13] uses the convolutional mixture density network for loca-
tion estimation with single tweet content. Term co-occurrences in tweets, which
exhibit spatial clustering or dispersion tendency, are detected and used to ex-
tend feature space in probabilistic language models [32]. For location prediction
during disaster events, Ouaret et al. [31] present an iterative Random Forest
fitting-prediction framework to learn semi-supervised models. A name entity
recognizer [28] is developed for geolocating tweets with the help of GeoNames
gazetteer. Kulkarni et al. [19] present a multi-level geocoding model that learns
to associate texts with geographical locations and represent locations using S2
hierarchy. Others propose to locate tweets based on BERT architecture with dif-
ferent tokenization settings, like vocabulary sizes [36]. In special cases, historical
locations of users are involved to boost location inference performance, like us-
ing the Markov model to formalize tweet geolocation in a flood-related disaster
based on history tweets [38].

Many researchers consider metadata to infer tweet locations [2, 17, 20]. Pli-
akos and Kotropoulos construct a hypergraph based on images, users, geotags
and tags of Flickr, which is further used for simultaneous image tagging and
geolocation prediction [33]. A refined language model that is learned from mas-
sive corpora of social content, including tags, titles, descriptions, user ids, and
image ids, is proposed to estimate the location of a post [16]. Miura et al. [29]
propose a simple neural network structure with fully-connected layers and an
average pooling process based on message text and user metadata for geoloca-
tion prediction. To classify the microblogs of WeiBo into 8 semantic categories,
the work [42] explores the effect of user attributes and designs a neural network-
based architecture with 4 feature fusion strategies.
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2.2 Hierarchical Geolocation

Although the class hierarchy has been shown to be effective in closely relevant
fields, like text classification [12,18,27,48], this problem has not thus far received
the attention it deserves. Only a handful of existing works estimate the locations
of tweets and explore geolocation performance using hierarchical locations. Pre-
vious efforts [26,43] represent locations as a tree and construct a local classifier
for each parent node to infer locations, which corresponds to a typical hierar-
chical classification technique, Local Classifier per Parent Node (LCPN) [37].
Multi-Task Learning (MTL) is incorporated to combine losses across multiple
levels and predict locations at each level simultaneously [9, 19]. Most of these
works aim at user location inference, whereas we study post geolocation.

Similar to our work, some research has attempted to infer fine-grained loca-
tions of tweets [3,4,30]. By investigating two properties, spatial focus and spatial
homophily, a learning-to-rank framework [3,4] is designed by ranking candidate
venues. The work [30] extracts semantic similarities between tweets and POI re-
views locally and globally to provide a Spatially-aware Geotext Matching model
building upon MLP. Both methods need to compute similarity features explic-
itly with additional datasets, like check-in data or POI reviews from Foursquare,
which is non-trivial and time-consuming to collect. While these works advance
the task of tweet geolocation, our work differs from these earlier works in various
ways, which we discuss next. Our method takes in tweet content and metadata
of the Twitter dataset directly as inputs, building upon BERT and using trans-
former encoders to learn correlations among features. Additionally, we employ
a uniform representation of decomposed hierarchical time elements to further
boost performance as the importance of temporal features is highlighted by
many studies [21, 25, 30, 38]. Moreover, we explore the effect of location hierar-
chy on the post geolocation performance by leveraging LCPN and MTL in our
proposed models.

3 Method

3.1 Problem Formulation

The Social Post Geolocation problem is defined as estimating the originating
location of tweets. In the same spirit as prior studies [21, 42, 43], the task is
formulated as a classification problem where the predicted target is a location.
Unlike these earlier works, which classify posts into countries or cities, we aim
at inferring locations at a finer-granularity level, that is at the landmark or POI
level. More specifically, the social post geolocation problem is represented as
inferring POIs, given text and metadata of social media as input.

3.2 Method Overview

The overall structure of our proposed model, transTagger, is shown in Figure 1.
To tackle the inconsistency of different social platforms, we classify the inputs
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Fig. 1. The architecture of our proposed model transTagger

of social media data into three categories. Information contained in social me-
dia data can be divided into user-generated and system-generated according to
sources. The user-generated content is of free form and could be very noisy. Be-
sides posting text, the user-generated content also includes user locations, user
descriptions and so on. They form the first category of inputs and we denote it
Text. System-generated content comprises textual fields and numerical fields.
The former is mostly categorical text, like source (indicating whether the tweet
is posted from the phone or web platform), which falls into the second category
of inputs: Categorical Text (CT). For the latter, numerical fields, a typical
one is the time (when the post is created), and others are less explored and
employed in post geolocation and we leave them for future research. The third
category is Time and we discuss the various representation techniques used in
later sections. Text, CT, and Time are depicted in orange, green, and blue,
respectively in Figure 1.

Our model applies BERT to learn semantic information and contextual in-
formation of Text and CT and maps features into a word embedding space.
Following that, the representations of [CLS] tokens are extracted from all tex-
tual features and combined with embeddings of Time. Then we use several
layers of transformer encoders to learn the correlation of all features. The POI
probability of each post is calculated using a fully-connected layer with softmax
as the activation function.

3.3 Feature Representation

We apply the pre-trained model by plugging in the post geolocation task-specific
inputs and outputs into BERT. At the architecture level, BERT is an L-layer
bi-directional transformer encoder [5]. The hidden size and the number of self-
attention heads for each component are denoted as H and A, respectively.
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Text, including posting texts, user locations, user descriptions, and CT, like
sources, are all used as inputs. Here a degenerate text-∅ pair corresponds to
sentence A and sentence B since we formulate the post geolocation task as a
classification problem and there is no ”sentence” pair. An input sample is re-
garded as a sentence in this paper although it may actually contain multiple
sentences. During tokenization, each sentence is converted into a sequence of to-
kens and a special classification token, [CLS], is injected in front of every input
sample [5]. Then the first token becomes [CLS]. Apart from the above token em-
bedding, other embeddings are utilized to take the position information inside
sentences or between sentence pairs into consideration. Position embedding rep-
resents the position of each token in a sentence. In contrast, segment embedding
is used to distinguish sentences A and B and thus is set to all zero in our case.
The element-wise addition of token, position and segment embeddings forms the
input representation [5].

We denote the learned embedding in the final hidden layer of each input sam-
ple as E ∈ RN×H where N is the sentence length. The corresponding embedding
of the [CLS] token is represented as C ∈ RH . This token embedding can be seen
as the aggregation of sentence representation, which is used for subsequent ap-
plications. Note that all the parameters are fine-tuned in an end-to-end manner
based on our task, post geolocation.

Time is a vital factor in relation to human mobility and thus, of great impor-
tance for location inference. However, most works simply represent it as one-hot
encoding based on the timestamp, which does not capture the full extent of
temporal information and ignores the hierarchy of time elements, like hours and
months. Inspired by this work [47], we propose a uniform representation of hi-
erarchical time elements, UniHier, to learn temporal information. Hierarchical
time elements are extracted from Time, including hours, weekdays, and months.
Then each element is represented as a learnable embedding vector with dimen-
sion H and limited vocab size. A uniform representation of time is constructed
by the element-wise addition of all embedding vectors.

3.4 Feature Fusion

Assuming that Text contains m fields, CT contains n fields, we extract [CLS]
token vectors of Text and CT, and concatenate them with the UniHier repre-
sentation of Time, then a feature matrix F ∈ R(m+n+1)×H is generated.

To learn the correlation of all features, we employ a multi-layer transformer
encoder as described in the work [41]. Positional encodings are represented using
sine and cosine functions of different frequencies as below and pos is the position,
i is the dimension:

PE(pos,2i) = sin(pos/100002i/H) (1)

PE(pos,2i+1) = cos(pos/100002i/H) (2)

These positional encodings are fixed during training and with dimension H. In
contrast to the now ubiquitous transformer encoder that sums feature represen-
tations and the corresponding positional encodings, we concatenate them and
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term it the concatenated version of positional encodings. Experiments demon-
strate that this approach improves performance.

After concatenating with positional encodings, this feature matrix is utilized
to calculate POI probabilities with a softmax layer. This model is then trained
using the Adam update rule as the optimizer.

3.5 Hierarchical Prediction

The hierarchy of locations enables the application of hierarchical prediction and
thus improves the performance of post geolocation. We incorporate LCPN, a
typical hierarchical classification approach, with transTagger, and construct a
variant, hierTagger. By combining the class hierarchy with MTL, we build upon
our earlier described transTagger and propose another variant, mtlTagger. Due
to space constraints, we briefly describe how to build these two variants and refer
interested readers to our released source code for the implementation details.

hierTagger The LCPN approach aims to train a multi-class classifier for each
parent node in the class hierarchy, to distinguish between its child nodes [37].
The class hierarchy is typically a tree or a Direct Acyclic Graph (DAG), which
is represented as a tree in our case. We build the tree of toponyms at different
scales, from coarse to fine, starting from a root node that covers the whole
research area. For every parent node in this tree, we employ transTagger to
construct a local classifier, which is trained independently. Then a top-down
class prediction approach is applied during the testing phase.

mtlTagger MTL provides models with better generalization ability by shar-
ing representations between related tasks [35]. The predictions of post location
at coarser levels are designed as auxiliary tasks. We incorporate transTagger
with hard parameter sharing, a commonly used approach with MTL in neural
networks, to predict post location at different scales, from coarse to fine. The
prediction result for the coarser level, denoted as q, is further utilized to con-
strain the finer level prediction by adding q to the loss function of the finer level.
A correlation matrix between the two levels is employed to help the loss function
of the finer level better understand the coarser level’s prediction result.

4 Experimental Setting

4.1 Datasets

We perform our experiments using datasets from two different social media plat-
forms, Flickr and Twitter, for two cities of Melbourne and Singapore.
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Twitter We collected 266,614 geotagged tweets that were posted in Melbourne
from 2010 to 2018, and 482,765 geotagged tweets that were posted in Singapore
from 2018 to 2022. We also combined tweets from Melbourne and Singapore
for experiments to test the robustness of our models. The Twitter datasets of
Melbourne, and Singapore, and their combination are denoted as Twitter-Mel,
Twitter-SG, and Twitter-SM, respectively.

Flickr The Flickr dataset comprises 78,131 geotagged images that were posted
in Melbourne from 2004 to 2020, extracted using the Flickr API or from the Ya-
hoo! Flickr Creative Commons 100M (YFCC-100M) [40]. We further augmented
this dataset by collecting the metadata of Flickr users. This dataset is denoted
as Flickr-Mel.2

A list of POIs and their categories are obtained using the Google Place API.3

For Singapore, our research area is the whole country/city and there are 9,666
POIs. For Melbourne, we concentrate on the central city area and there are 242
POIs. To implement hierarchical prediction, POI themes and POI sub-themes
are involved as labels to construct the class hierarchy. Specifically, there are 16
POI themes (eg., Leisure/Recreation), 49 POI sub-themes (e.g., Park/Garden),
and 242 POIs (e.g., Batman Park).

Our work aims to predict the specific POI where a post is sent from, in
contrast to existing efforts that focus on coarse-level predictions at the city,
country, or even continent level. To this end, we label a tweet tw in the Twitter
dataset (or image im in the case of the Flickr dataset) as one and only one POI.
Following the proximity principle [22], we compare the distance between tw (or
im) and the POI location using their latitude and longitude coordinates, and
label it with the POI if their distance differs by less than 100 meters. Any tw
(or im) that is not assigned a POI label is then filtered out. Note that the above
statistics of the Twitter and Flickr datasets are computed after POI-labelling
preprocessing.

Our two variants involve the use of class hierarchy of POIs. For example,
hierTagger utilizes POI-theme level and POI-level labels, while mtlTagger con-
tains three loss functions that are designed for POI theme, POI sub-theme, and
POI predictions, respectively.

4.2 Evaluation Metrics

We use two evaluation metrics that are frequently used in geolocation tasks,
namely accuracy and distance error. Accuracy, denoted as acc@k, reflects the
proportion of correct predictions based on the top-k results and we evaluate
with k as 1, 5, 10, and 20. Mean distance error, represented as mean, measures
the mean distance between the predicted location and actual POI location. We
also experimented using median distance error and observe that our models

2 We also collected a Flickr dataset for Singapore but excluded it for further experi-
mentation due to a low number of data points.

3 https://developers.google.com/maps/documentation/places/web-service/overview
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achieve 0 error, thus we do not report the results for concision. Unless otherwise
specified, all results reported in this paper are at the POI level to make our
models comparable.

4.3 Parameter Setting

In our experiments, the max sequence length for text and other textual features is
100. To represent Time inputs using UniHier, they are randomly initialized from
a uniform distribution U(−1.0, 1.0) with dimension 128 (this value corresponds
to the dimension of word embeddings) and vocab size is limited to 60 since
the finest granularity is a minute. These embeddings are then learned during
training.

The hyperparameter tuning is conducted using Bayesian optimization on the
learning rate, the number of encoder layers, the number of heads, hidden size,
and batch size. The number of layers, the number of attention heads, and the
hidden size of the transformer encoder before the softmax layer are set as 3, 48,
and 1300, respectively. The training of our model is performed using Adam with
an initial learning rate of 3e-4 and a batch size of 128. We train the model with
4 epochs. Additionally, the block threshold for hierTagger is set as 0.01 and the
loss weights for mtlTagger are 0.1, 0.1, and 1.

4.4 Baselines

We compare our proposed model and two variants with various popular ge-
olocation models, including MNB-Ngrams (Multinomial Naive Bayes with
Uni/Bi/Tri-grams) [2, 4, 7, 26, 32], CNN-TT (Convolutional Neural Network
with Text and Time) [22], and HLPNN (Hierarchical Location Prediction Neu-
ral Network) [9]. The CNN text classification model [15] is widely used for geolo-
cation [10,13,25], which we include as a baseline CNN in our experiments, along
with its variant that uses one-hot encoding CNN-1Hot [14]. Besides HLPNN,
another hierarchical classification model, HDLTex (Hierarchical Deep Learning
for Text Classification) [18] is utilized as one of baselines. Our two proposed
variants, hierTagger and mtlTagger, are also involved in comparisons.

Table 1. Baseline comparison on Flickr-Mel and Twitter-Mel

Flickr-Mel Twitter-Mel
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(m)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(m)↓

HLPNN 68.68 83.62 88.95 93.87 247.6 61.45 76.7 81.85 87.05 433.2
HDLTex 56.89 64.71 66.49 70.14 604 56.2 64.67 66.33 67.69 512.5
CNN-TT 75.49 87.63 90.83 94.14 241 67.85 80.69 84.93 89.19 351.9
CNN 59.4 74.19 81.16 88.43 528 60.45 77.27 83.45 88.54 408.5
CNN-1Hot 59.91 76.69 83.25 90.14 697.7 63.08 76.89 80.92 85.43 362
MNB-Ngrams 54.35 71.71 79.93 88.61 1071 49.82 73.6 79.05 84.62 500.7

transTagger 77.88 89.85 93.05 93.05 175.8 71.96 84.64 88.2 88.2 303.3
hierTagger 77.59 90.13 92.91 95.87 183.5 71.42 84.34 88.12 91.49 319.5
mtlTagger 77.22 89.44 92.86 95.73 182.9 71.84 84.67 88.03 91.44 317.9
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Table 2. Baseline comparison on Twitter-SG and Twitter-SM

Twitter-SG Twitter-SM
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓

CNN-TT 53.76 67.27 70.29 72.81 2.617 54.8 68.64 72.41 75.7 154.3
CNN 49.77 62.04 64.72 67.66 2.949 48.98 62.11 65.5 69.09 542.7
CNN-1Hot 38.34 50.11 52.96 55.86 3.536 38.85 52.05 55.54 59.21 882.9

transTagger 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69

5 Experimental Results

5.1 Baseline Comparison

To verify the effectiveness of our proposed models, experiments are designed to
compare the performance of three variants and various baselines on the Flickr-
Mel and Twitter-Mel datasets, as shown in Table 1. Similar experiments are
conducted on the Twitter-SG and Twitter-SM datasets as well as to further
examine the robustness of geolocation performance, as presented in Table 2. We
only report results for transTagger and three baselines as the hierarchical labels
are not available for the latter two datasets.

Overall, transTagger, hierTagger, and mtlTagger outperform all baselines,
including the hierarchical ones, across all four datasets. Compared with a strong
baseline like CNN-TT, transTagger outperforms by a substantial margin, obtain-
ing an improvement of 2.39%, 4.11%, 8.18% and 10.08% in accuracy (acc@1) on
Flickr-Mel, Twitter-Mel, Twitter-SG, and Twitter-SM, respectively. The latter
two datasets contain many more POIs and the improvement of transTagger over
the baselines is even larger. This indicates that our model is versatile enough to
handle a large number of classes (POIs) well. In addition to accuracy, the mean
distance error is also greatly reduced. To be specific, transTagger reduces the
mean distance error by 65.2, 48.6, 402, and 1174 meters, compared with CNN-
TT. In contrast to Table 1, we use kilometers (km) to denote distance in Table 2
because Twitter-SG and Twitter-SM cover much larger areas and thus values of
mean distance error are relatively higher. In addition, the distance calculation
of Twitter-SM involves two cities and thus is quite sensitive to prediction ac-
curacy as this dataset is a mixture of Twitter-SG and Twitter-Mel. Therefore,
the distance errors would increase greatly in comparison to the corresponding
accuracy that decreases slightly, as shown in Table 2 and Table 4.

The overall results show that our proposed models provide superior perfor-
mance for POI-level post geolocation across all cities and platforms, compared
to the various baselines.

5.2 Representation Combination Selection

Taking generalization into consideration, we categorize inputs into three types:
Text, CT, and Time, and performed a representation for each type, as pre-
viously described in Section 3. However, there are multiple ways to represent
each input type. For CT, one way is to treat categorical texts as normal texts
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Table 3. Representation combination selection on Flickr-Mel and Twitter-Mel

Flickr-Mel Twitter-Mel
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(m)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(m)↓

transTagger
Text-Text 77.88 89.85 93.05 93.05 175.8 71.96 84.64 88.2 88.2 303.3
1Hot-Text 77.88 89.85 93.05 93.05 175.8 71.69 84.6 88.29 88.29 322.1
Text-UniHier 78.04 90.16 93.28 93.28 171.6 70.03 84.32 88.09 88.09 313.8
1Hot-UniHier 78.04 90.16 93.28 93.28 171.6 69.69 84.25 87.87 87.87 308.3
Text-1Hot 77.49 89.66 92.99 92.99 184.1 69.91 84.13 87.71 87.71 316.9
1Hot-1Hot 77.49 89.66 92.99 92.99 184.1 69.5 84.26 88.04 88.04 321.6

hierTagger
Text-Text 77.59 90.13 92.91 95.87 183.5 71.42 84.34 88.12 91.49 319.5
1Hot-Text 77.59 90.13 92.91 95.87 183.5 71.49 84.45 88.15 91.56 324.5
Text-UniHier 78.18 89.94 93.15 95.83 169.5 70.03 84.29 88.03 91.52 314.4
1Hot-UniHier 78.18 89.94 93.15 95.83 169.5 69.6 84.18 87.78 91.07 308.8
Text-1Hot 77.23 89.43 92.82 95.56 190.2 69.82 84.04 87.57 91.16 316.7
1Hot-1Hot 77.23 89.43 92.82 95.56 190.2 69.35 84.19 87.96 91.46 321.9

mtlTagger
Text-Text 77.22 89.44 92.86 95.73 182.9 71.84 84.67 88.03 91.44 317.9
1Hot-Text 77.22 89.44 92.86 95.73 182.9 71.48 84.45 88.04 91.64 315.1
Text-UniHier 78.93 90.18 93.31 95.97 168.3 69.91 84.3 87.94 91.52 312.9
1Hot-UniHier 78.93 90.18 93.31 95.97 168.3 69.16 84.06 88.01 91.39 314.2
Text-1Hot 77.84 89.9 93.36 96.26 179.1 69.62 84.18 87.83 91.35 317.3
1Hot-1Hot 77.84 89.9 93.36 96.26 179.1 69.39 84 87.72 91.33 314.9

and use BERT or other language models to generate representations, and we call
this Text embedding. Another commonly used approach is one-hot encoding. For
Time, one way is to treat date/time as a standard text and generate temporal
embedding using language models. Hence, there are two ways to represent CT:
text and one-hot, and three ways for Time: text, one-hot, and UniHier. This
results in six combinations of these representation methods, which we further
experiment to find an optimal representation combination strategy. The results
are illustrated in Table 3 and Table 4, where Text denotes Text embedding, and
Text-UniHier refers to using Text embedding for CT and UniHier representation
for Time, and so forth. Note that the results of Text-Text and 1Hot-Text are
duplicated for Flickr since there are no CT fields. Similarly for Text-UniHier
and 1Hot-UniHier, Text-1Hot and 1Hot-1Hot.

The results show that Text-Text delivers the overall best performance across
all Twitter datasets. However, Text-UniHier (or 1Hot-UniHier) outperforms oth-
ers for the Flickr dataset. One possible reason is that Flickr contains more time

Table 4. Representation combination selection of transTagger on Twitter-SG and
Twitter-SM

Twitter-SG Twitter-SM
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓

Text-Text 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69
1Hot-Text 61.37 73.26 76.36 76.36 2.292 64.84 76.88 80.06 80.06 3.263
Text-UniHier 58.1 72.71 75.92 75.92 2.318 61.9 76.1 79.55 79.55 56.63
1Hot-UniHier 57.82 72.63 75.94 75.94 2.332 61.53 76.13 79.48 79.48 69.64
Text-1Hot 58.13 72.71 75.92 75.92 2.334 61.74 76 79.33 79.33 67.52
1Hot-1Hot 57.3 72.43 75.65 75.65 2.349 61.21 75.8 79.24 79.24 58.33
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fields, including photo taken time and photo posted time, compared to Twitter
that only contains tweet created time. Therefore, the best representation com-
bination is Text-Text. In the event where multiple time inputs are involved, it
is recommended to represent temporal inputs using UniHier.

We further compare the performance of three variants. Contrary to our ex-
pectations, hierTagger and mtlTagger show no distinct advantage, except for
acc@20. Hence, these two variants are recommended when this specific metric is
important. The intuition of utilizing hierarchical locations is that the prediction
results at coarser level can help guide the geolocation at target level. However,
this process might involve error propagation and thus impair the expressive
power of the whole architecture. An effective mechanism for correcting these
prediction errors is a promising direction to boost geolocation performance, and
we leave this for future work.

Table 5. Ablation study on Twitter-SG and Twitter-SM

Twitter-SG Twitter-SM
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean(km)↓

transTagger 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69
w/o transformer 60.3 72.44 75.64 75.64 2.338 63.92 76.7 80.1 80.1 6.108
w/o position 61.28 73.01 75.96 75.96 2.292 64.39 76.43 79.75 79.75 4.917

5.3 Ablation Study

We compare transTagger with two ablations to examine the effectiveness of two
model components, namely transformer encoders and position encodings. Ta-
ble 5 shows the performance breakdown on Twitter-SG and Twitter-SM. For
w/o position, we replace the concatenation version of positional encodings with
the commonly used add-on version. The w/o transformer ablation removes the
transformer encoders which are used to learn the correlation of features. The
results demonstrate that all components contribute to improving the post geolo-
cation performance of transTagger. Among all components, encoders have the
greatest effect as shown by how it increases accuracy (including acc@1, acc@5,
acc@10, and acc@20) and reduces the mean distance error by the largest margin.

Table 6. Coarse-Level Geolocation

Flickr-Mel(POI-Theme) Flickr-Mel(POI)
Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑

HLPNN 79.92 97.16 100 100 68.68 83.62 88.95 93.87

hierTagger 83.22 97.93 100 100 77.59 90.13 92.91 95.87
mtlTagger 81.57 97.49 99.97 100 77.22 89.44 92.86 95.73
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5.4 Coarse-Level Geolocation

We now study the prediction results of coarse-level geolocation since our two hi-
erarchical variants both incorporate the toponym hierarchy. Although mtlTagger
is capable of inferring locations at three levels, only the results of POI theme
and POI are listed in Table 6 to make mtlTagger consistent and comparable
with hierTagger. We observed that our models not only outperform at the tar-
get level (POI) by a large margin but also present outstanding coarse-level (POI
theme) performance, even when compared with the competitive hierarchical ge-
olocation algorithm HLPNN [9]. Furthermore, hierTagger obtained an absolute
improvement of almost 2 points compared to mtlTagger (acc@1) for POI-theme
geolocation even though the two have a similar capability of estimating POI-level
locations. To force the model to focus more on our target task, POI geolocation,
we set the weights of mtlTagger as 0.1, 0.1, and 1, for the loss functions of POI
theme, POI sub-theme, and POI, respectively. In turn, this might be the cause
of a negative impact on coarse-level prediction.

6 Conclusion

In this paper, we propose a transformer-based general framework, transTagger,
for POI-level post geolocation. The inputs are categorized into three types:Text,
CT, and Time to handle different social data, and the optimal representation
combination, Text-Text, is provided by experimenting with all combinations. A
novel representation of time, UniHier, is presented and verified to be useful in the
case of multiple temporal inputs. Transformer encoders are employed to enhance
geolocation performance and a concatenated version of encodings is incorporated
to capture feature-wise positions. The effectiveness and robustness of our model
are demonstrated on four datasets, covering two cities and two social platforms.
Two variants, hierTagger and mtlTagger, by incorporating respective LCPN and
MTL with transTagger, are shown to lift acc@20 effectively.

While these results are encouraging, we believe our approach can be further
improved via two future directions. Firstly, we can explore more representation
methods for different inputs, like numeral embeddings to extract time entities
accurately. Secondly, we can also incorporate other modalities in addition to
text and numbers, such as images and videos to provide more comprehensive
knowledge.
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