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Abstract—The rise of social media has enabled individuals to
rapidly share information, including rumours, which can have
significant impacts on various domains. Traditional approaches
to rumour control are impractical for social media platforms
due to the volume and speed of information. Automated detection
methods are needed that not only identify rumours early but also
provide explanations for their decisions to protect free speech.
Recent advancements in deep learning have shown promise in
automating rumour detection. Graph-based models, such as Bi-
directional Graph Convolution Network (Bi-GCN), capture prop-
agation, and dispersion patterns to differentiate rumours from
the truth. However, the interpretability of these deep learning
models is a challenge. This paper focuses on Graph Convolution
Networks (GCN), which lack attention maps for easy model
attribution but excel at capturing global structural features. We
investigate the importance of graph structure in rumour detection
using two GCN models on a real-world dataset, analyzing the
learned latent propagation and dispersion features. To the best of
our knowledge, this is the first study to explore GCNs in rumour
detection and investigate the significance of graph structure in
this task. Our research addresses three primary questions: (1)
the primary contributors to GCN-based rumour detection models
and their differences across models, (2) the importance of graph
structure for accurate predictions in GCN-based models, and (3)
the latent propagation and dispersion features learned by GCN-
based detection models during the rumour detection process.

Index Terms—rumour detection, graph convolution networks,
explainability

I. INTRODUCTION

ITH the rise of social media, individuals have gained
Wthe power to rapidly create and disseminate informa-
tion, reaching large audiences in a matter of seconds. While
this facilitates the efficient and unrestricted sharing of ideas, it
also opens the door to the dissemination of harmful content,
including rumours [1]-[3]. The impact of rumours on various
aspects, such as the economy, politics, and public health, has
been evident during events like the COVID-19 pandemic in
several countries [4].

In traditional media, the editing and vetting process before
publication serves as a safeguard against rumour propagation.
However, applying the same approach to social media plat-
forms is neither practical nor reasonable due to the sheer
volume and speed of information being shared. Although
allowing users to report potentially rumour-related content for
manual review could be a solution, it would still be labour-
intensive and not entirely effective. Therefore, there is a need
for automated detection methods that are both efficient and
interpretable. To avoid accusations of unwarranted censorship,
these detection methods must not only identify conversations
or posts containing rumours as early as possible to prevent

further spread but also provide explanations for their deci-
sions, protecting the users’ rights to free speech. Thus, the
development of rumour detection techniques should prioritize
both timely identification and interpretability.

Recent advancements in deep learning techniques have
shown promising results in automated feature extraction from
data, surpassing classical methods and offering a less labour-
intensive approach for early rumour detection. These tech-
niques encompass various models, including sequence models
such as Long-Short Term Memory (LSTM) [5] and Gated
Recurrent Unit (GRU) [5], as well as models utilizing tree
or graph-structured data such as Propagation Tree Kernel
with Support Vector Machine (PTK) [6], Recursive Neural
Networks (RvNN) [7], [8], Bi-directional GCN (Bi-GCN)
[9], Edge-enhanced Bayesian GCN (EBGCN) [10], and the
recently proposed Claim-guided Hierarchical Graph Attention
Network (ClaHi-GAT) [11] and Dual Attention GCN (DA-
GCN) [12].

Earlier research by Vosoughi et al. [1] has demonstrated that
rumours tend to spread farther, faster, and wider than truthful
statements. In response, graph-based models were developed
to capture the underlying propagation and dispersion patterns
of rumours, enabling easier differentiation from the truth.
For instance, Bi-GCN leverages tweet representations and
the adjacency matrix of tweet relations to construct both a
top-down and a bottom-up graph. This approach allows Bi-
GCN to learn distinct node representations that capture diverse
structural properties of the graph. Although these deep learning
models exhibit superior performance compared to classical
machine learning techniques, their decision-making process is
more challenging to interpret.

This paper aims to investigate the effectiveness of Graph
Convolution Networks (GCNs) in rumour detection, given
their popularity as a model choice. Unlike Graph Attention
Networks (GAT), GCNs lack attention maps that facilitate
straightforward model attribution, making it more challenging
to explain their decision-making process. Moreover, compared
to models like Recursive Neural Networks (RvNN) and other
sequence models, GCNs demonstrate superior capability in
capturing global structural features [9], rendering them a
worthwhile focus of study.

To assess the significance of graph structure in rumour
detection, we conduct experiments using two models on the
PHEME dataset [13] and the Twitter 15/16 dataset [6]. The
former comprises tweets related to nine events, exhibiting a
class imbalance favouring the non-rumour and true-rumour
classes, while the latter comprises tweets from events in
2015 and 2016 with a balanced class distribution. In addition
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to evaluating the importance of graph structure in rumour
detection, we analyse the latent propagation and dispersion
features learned by GCN-based models to determine if they
capture meaningful structural characteristics.

To the best of our knowledge, this study represents the first
attempt to elucidate the functioning of GCNs in the context of
rumour detection. Moreover, it is the first work to investigate
the significance of graph structure in the rumour detection
task. In summary, our research aims to address three primary
research questions:

o RQ1: What are the primary contributors to GCN-based
rumour detection models, and how do these contributors
differ across models?

e RQ2: How crucial is the graph structure for GCN-based
rumour detection models in making accurate predictions?

« RQ3: What latent propagation and dispersion features do
GCN-based detection models capture and learn during the
rumour detection process?

II. RELATED WORK
A. Graph-based Rumour Detection

Rumour detection is a crucial task in combating misinfor-
mation in online media. Unlike fake news, which deliberately
spreads misinformation, rumours can be both intentional and
unintentional. Graph-based rumour detection models leverage
graph-structured data to make predictions, enabling them to
capture not only textual features but also topological and other
graphical features.

There are several categories of graph-based rumour de-
tection models, including kernel-based models, RvINN-based
models, GCN-based models, and GAT-based models. Kernel-
based models compute graph similarities by enumerating
similar subgraphs, such as PTK and cPTK [6]. RvNN-based
models learn node representations by aggregating information
from neighbouring nodes through multiple recursions [7], [8].
However, RvNN-based models face challenges in capturing
global structural features due to the use of sigmoid functions
during the aggregation step, which can lead to vanishing
gradients as the number of recursions increases [14]. On the
other hand, GCN-based and GAT-based models do not em-
ploy sigmoid functions during aggregation, allowing them to
effectively capture global structural features. Notable examples
of GCN-based models are Bi-GCN [9] and EBGCN [10],
while GAT-based models include ClaHi-GAT [11] and DA-
GCN [12].

Although we have chosen Bi-GCN and EBGCN as objects
of study, our work is not focused on model performance on the
rumour detection task. Instead, we focus on explaining the im-
portance of graph structure for GCN-based rumour detection
models with Bi-GCN and EBGCN as specific examples.

B. Graph Explainability

There are two broad categories of explainability techniques
for graph neural networks (GNNSs): adapted methods and origi-
nal methods. Adapted methods encompass Sensitivity Analysis
(SA) [15], Layerwise Relevance Propagation (LRP) [16], [17],

Gradient-weighted Class Activation Mapping (Grad-CAM)
[18], Excitation Backpropagation (EB) [19], [20] and Local
Interpretable Model-agnostic Explanations (LIME) [21]. On
the other hand, original methods include GNNExplainer [22],
PGExplainer [23], PGM-Explainer [24], RelEx [25], Sub-
graphX [26], CGAT [27].

Backpropagation-based methods such as SA, Grad-CAM,
EB, and LRP are employed for model explanations. SA
calculates the squared values of gradients from the model’s
output to input features, revealing the sensitivity of input
features to the outputs. However, it is prone to saturation
problems [15]. Grad-CAM backpropagates gradients from
the target class to the desired convolution layer, resulting
in coarse-grained model attribution achieved by multiplying
these gradients with convolution feature maps [18]. LRP
determines fine-grained model attribution by backpropagating
relevance through all layers, and it provides more meaningful
attribution in relative terms by normalizing relevance values
after each layer’s backpropagation [16], [17]. EB uses a top-
down Winner-Takes-All approach to generate probabilities for
each neuron’s contribution to the final output [19], [20]. LIME
obtains locally-linear approximations of model behaviour by
observing the effect of perturbing input values on the model’s
predictions [21].

GNNExplainer trains a surrogate model to explain indi-
vidual node predictions by learning a compact subgraph and
relevant node features essential to a specific node’s prediction.
It can also extend its explanations to the graph level by
aggregating individual node explanations [22]. PGExplainer,
on the other hand, trains a surrogate model to explain graph-
level predictions. It generates a probability graph of the input
graph, identifying the subgraph that contributes the most to
individual node predictions and graph-level predictions [23].
PGM-Explainer trains a probabilistic graphical model by per-
turbing node features randomly. The top dependent variables
are selected using the Grow-Shrink algorithm, and a Bayesian
network is trained on the reduced feature set to explain the
original GNN [24]. RelEx trains a surrogate GCN model on
perturbed data, generates explanations by applying soft masks
on the surrogate GCN, and uses randomly sampled subgraphs
to obtain predictions for the original GNN [25]. SubgraphX
utilizes Monte Carlo Tree Search to generate subgraph-level
explanations, identifying the most important subgraph as an
explanation for the prediction [26]. Finally, CGAT utilises
an adversarial approach via combining graphs to force the
detector to learn more distinctive class features which we can
then extract to perform explanations on [27].

In contrast to existing methods that primarily focus on
node explanations, our proposed method aims to elucidate the
latent propagation and dispersion features learned by GCN-
based rumour detection models. Furthermore, our focus is
on understanding the contribution of graph structure to the
model’s prediction, including the importance of edges, which
is not directly explained by other methods.
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III. PRELIMINARIES
A. Graph Convolution Networks

1) Bi-directional Graph Convolution Network: The pio-
neering work of Bi-GCN introduced the application of GCNs
to graph-based rumour detection [9]. Bi-GCN utilizes two
separate GCNs to capture graph structure and text features
from the top-down (TD) and bottom-up (BU) graphs, respec-
tively. These features are then concatenated to form the input
for a classifier. The model takes tweet vector representations
and the corresponding TD/BU graph’s edge index as input.
Within each Graph Convolution Layer (GCL), a trainable
feature extraction layer extracts textual features from the input
and passes the learned lower-dimensional representations to
the message-passing function. Notably, the model does not
incorporate explicit edge weights as inputs. Instead, it employs
a default edge weight generation function based on an inverse
exponential function, where the number of hops from the root
node determines the exponent. In the TD GCN, larger weights
are assigned to the root node and nodes closer to it, while in
the BU GCN, larger weights are assigned to leaf nodes and
nodes closer to them.

2) Edge-enhanced Bayesian Graph Convolution Network:
EBGCN builds upon the achievements of Bi-GCN by intro-
ducing an additional edge consistency loss to improve perfor-
mance and infer edge weights [10]. In contrast to Bi-GCN,
which relies on a simple approach to generate edge weights
for unweighted edges in the top-down (TD) and bottom-up
(BU) graphs, EBGCN incorporates a weight inference layer
after the first Graph Convolution Layer (GCL). This dedicated
layer is responsible for inferring edge weights for the second
GCL. As the first GCL in EBGCN is identical to that of Bi-
GCN, the graph contribution remains the same for this layer.
In essence, EBGCN achieves the capability to dynamically
weigh the importance of edges, enhancing its ability to capture
informative graph structures.

B. Graph Centrality Measures

Graph centrality measures are fundamental tools in graph
theory and network analysis for assessing the significance of
nodes within a graph. These measures are valuable in various
domains, such as identifying influential individuals in social
networks, key nodes in network infrastructure, or analyzing
disease outbreaks. Each centrality measure ranks nodes based
on different notions of importance, offering diverse perspec-
tives on what defines importance within a specific network. In
our study, we have selected three centrality measures that are
relevant to social network analysis, enabling us to evaluate the
importance of nodes in the propagation graph and determine
their significance based on their network positions.

e Out-Degree: The normalized out degree centrality is
. _ degout (v
defined as follows: C"Dmf,t (v) = WLQOL(‘D): Out-
degree serves as an indicator of dispersion within the
immediate neighbourhood of a node in TD graphs.
+ Betweenness: The betweenness centrality is formulated
as: Cg(v) = Y 2:t() " \where oy represents
. B vESELEV oo st p
the number of shortest paths from node s to node ¢,

and o4 (v) denotes the number of those paths that pass

through node v. Betweenness can be employed as a
measure of dispersion, as a higher betweenness score
implies greater importance of a node as a conduit for
information flow between the root and other nodes.

o Closeness: The closeness centrality is calculated using
the formulation: C¢(v) = %, where N represents
the number of nodes in the ugraph, and d(u,v) denotes
the shortest path distance between node u and node v.
In the BU graph, a lower closeness score corresponds to
a node that is further away from the root. Having more
nodes with lower closeness values can be considered as an
indication of message propagation in the graph, implying
the spread of information to distant nodes.

By employing these centrality measures, we can effectively

assess the importance of nodes within the network and gain
insights into their roles in propagation dynamics.

IV. METHODOLOGY

In order to provide an explanation of the GCNs utilized in
rumour detection, we focus on the constituents of the GCL
and the intermediate outputs that are of particular interest
to us. As depicted in Fig. 1, each GCN consists of two
GCLs, denoted as GCNConv in the diagram, which we have
highlighted with a red box. The GCNConv operation is a
type of graph convolution introduced by Kipf et al. [28].
The detailed breakdown of this operation is illustrated in
the enlarged view of the GCNConv module. Within each
GCL, there exists a linear layer responsible for extracting
textual features from the nodes. By examining the feature
maps generated by these two layers, we can assess the relative
importance of individual nodes within each layer, with each
row in the feature map corresponding to a node in the graph.

To address RQ1, we aim to uncover the features learned by
GCN models when applied to the task of rumour detection
using graph-structured conversation threads. Each GCL is
responsible for capturing both textual and graphical aspects.
Initially, a linear layer extracts pertinent textual features, which
serve as node representations for subsequent message-passing
operations. Prior to message passing, self-directed edges are
introduced for each node. These self-directed edges play a
crucial role in the message-passing operation, facilitating the
aggregation of extracted textual features based on their edge
relationships. For instance, in a TD GCN, a node with n
child nodes would have a total of 2n + 1 edges, compris-
ing n + 1 self-directed edges and n vectors. Each edge’s
vector, originating from the source node, is multiplied by
its corresponding edge weight, resulting in 2n + 1 vectors
for the aggregation step. During aggregation, element-wise
addition is performed for vectors associated with the same
destination node. Ultimately, the GCL produces n vectors,
representing the learned node representations for that specific
layer. Consequently, the graph’s structure can be implicitly
captured in the node update step within the GCL. This is
exemplified by Bi-GCN, where edge weights are naively
generated, allowing the model to learn the graphical features
indirectly. In contrast, EBGCN infers edge weights in the
second GCL, enabling direct learning of graphical features
by assigning appropriate weights to each edge.
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Fig. 1: Diagram of GCN layers

A. Identifying Model Component Contributions

To dissect how various components within our model con-
tribute to its final output, a thorough understanding of these
components is essential. Based on our in-depth knowledge
of the model’s architecture and the data it processes, we
have identified two pivotal types of features learned by the
model: (i) textual features, derived from content analysis, and
(ii) graphical features, emanating from the propagation graph
structure. Grounded on these distinct features, we categorize
the contributions into three types: (i) Textual Component
Contribution, assessing the impact of textual features; (ii)
Graphical Component Contribution, evaluating the influence
of graphical features; and (iii) Joint Contribution, which
examines the synergistic effect of combining both types of
features. In the following subsections, we delve into the
specifics of how we compute these respective contributions.
This detailed exploration will provide a clearer understanding
of the individual and combined roles of textual and graphical
components in shaping the model’s performance and output.

1) Textual Component Contribution: To assess the influ-
ence of the textual component, we employ LRP to generate
a relevance map for the activations emerging from the GCL
layer. Subsequently, we introduce a slight modification to
the approach presented in Montavon et al. [16] in order
to distinguish the relevance flows through the two distinct
edge types. Specifically, we focus solely on the rows in the
relevance map that correspond to self-directed edges. Within

these rows, we aggregate the relevance values to compute a
relevance score for each node. The modified LRP procedure
can be formulated as follows:

=Y Ry + R (1)
JjEP;
(1) R(ul) * W~(»1) * V(l)
T' — 17 17 1 (2)
‘ >, R« w M)
eEn T (%3 1
where RWi represents the relevance of the " node. The

term » j € P;RW ji denotes the cumulative relevance flow-
ing through all edges ji from parent nodes j to node <.
Meanwhile, R(1ii indicates the relevance flowing through
the self-directed edge connected to node i. The relevance
T corresponds to the relevance associated with the textual
features extracted from node i. Additionally, W (1)ii represents
the weight assigned to the self-directed edge ¢i, and Vi(l)
signifies the feature vector of node i. The superscript (1) is
utilized to indicate the values specific to the first GCL.

In the second GCL, as the input consistently includes
additional information from the root node, we consider those
parts as constants. We apply the modified LRP procedure,
similar to the first step, to obtain a feature map. This feature
map is utilized to calculate the contributions following a
similar approach as in the first GCL: t = .. Vim. Next,
we employ the following equation to determlne the combined
contribution of textual features:
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To obtain the relative contribution, we perform a normalization
step:
o, = ﬁ “
iev b
where ¢, is the relative textual contribution from each node.
With this, we can obtain a ranked list of nodes by contribution
for the TD and BU GCN from both models.

2) Graphical Component Contribution: To assess the con-
tribution of the graphical component, we consider two aspects:
the edges and the nodes. Firstly, we extract the edge weights
generated by each GCL in both GCNs within the model. These
weights indicate the importance attributed to the information
flow along the corresponding edges and reflect their respective
edge contributions. Additionally, each GCL generates a self-
directed edge for every node, and the weight on this edge
signifies the node’s contribution.

Since the inputs to the second GCL include the node
representations produced by the first GCL, the edges not only
transmit information from the source node but also carry
information from the preceding sources. Consequently, when
determining the contribution of individual edges, this aspect
must be taken into account. Given a triplet of nodes ¢, j, k,
where node ¢ is the parent of node j, which in turn is the
parent of node k, the individual contribution of edge ¢j is
computed as follows.

W +o@ + 3 w?
keEA;

Vi, jkeV (5

Wiy =

1

Specifically, we denote w;;" as the weight of the edge ij from

the first Graph Convolutlon Layer (GCL), w
the same edge from the second GCL, and w]( k) as the weight of
the edge jk from the second GCL. To normalize each weight
and obtain the relative contribution, we normalize each weight
by the sum of all weights:

) as the weight of

wij
Zi, jev Wij
To calculate the overall contribution of each node, denoted by
cn;» we consider the self-looping edge 7% in each GCL. We
sum the weights of the self-looping edge for each GCL and
add the contributions from all edges where node i serves as

the source. The equation for deriving the node contribution is
as follows:

(6)

Cey; =

wi=wl +wi + 3wy Vigjev (7)

JEA;

where wz(ll ) and wz(? ) are the weights for edge ¢¢ from the first

and second GCL respectively and A; is the adjacency matrix
of node i.

To obtain the relative contribution, we perform a similar
normalization step as with the edge contributions:

Cny = ®)
diev Wi
where c,,, is the relative contribution for each node. With the
node and edge contribution maps obtained from both Bi-GCN
and EBGCN for both the TD and BU graphs, we rank the
nodes and edges by their contribution and compare the ranked
lists with each other to look for differences.

3) Joint Contribution: To evaluate the combined contribu-
tions of the two components, we utilize LRP to generate a
heatmap indicating their relative importance. LRP is chosen
for its principled approach, as it normalizes intermediate inputs
at each layer, enabling us to quantify their contributions
accurately. The resulting heatmap highlights the nodes that
the model deems most significant for the final output. To
obtain the contributions, we follow a similar procedure to
summing values across rows in the heatmap, as done for
textual contributions:

o Z lim ©)
(n)

where ¢;" is the contribution of the i*" node for the n'"* output
logit and l; m is the relevance value for the mt" dimension of
the it* row. For each output class, we obtain a ranked list of
nodes by contribution which will be used for comparison.

To obtain the relative contribution over all classes, we
simply perform an element-wise addition weighted by the
normalized value of the output logits 0(™), for all the heatmaps
before normalizing the values by the sum of all the heatmap
values. The equation below shows how to compute this:

n) .(n)
52 o )Cz(i

o = (10)

i

B. Importance of Graph Structure

To answer RQ2 and determine the importance of the graph
structure in model behaviour and performance, we perform a
variety of tests:

o Edge Deletion: We perform edge deletion in the graph,
which retains the complete textual content while reducing
the influence of the graph structure.

« Set Initial Edge Weights: We initialize the edge weights
uniformly to a value of 2. This configuration disregards
any information propagated through self-loops.

For each of these configurations, we utilize LRP to extract
the contributions associated with each class prediction. We
then compare these contributions with those obtained from the
original, unaltered data to identify and analyze any observed
changes in behaviour.

C. Latent Propagation and Dispersion Features

To address RQ3 and gain insights into the latent propagation
and dispersion features learned by the model, we employ
four centrality measures to generate ranked lists of node
importance. These lists are then compared with the ranked
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TABLE I: GCN-wise Jaccard Similarities for PHEME and Twitter15/16

Model/Output Method/Dataset
Anchor Comparison LRP/PHME Grad-CAM/PHEME | c-EB/PHEME LRP/Twitter Grad-CAM/Twitter | c-EB/Twitter
EBGCN TD/Text 0.207 £ 0.10 0.177+£0.15 0.211 +£0.11 0.173 £ 0.09 0.206 £+ 0.10 0.206 £ 0.10
Bi-GCN TD/Text Bi-GCN BU/Text 0.131 +0.09 0.098 £ 0.09 0.135 +0.09 0.138 £0.07 0.144 +0.08 0.144 £+ 0.08
EBGCN BU/Text 0.167 + 0.09 0.078 £ 0.09 0.160 + 0.09 0.145 £+ 0.07 0.146 + 0.08 0.146 + 0.08
EBGCN TD/Text Bi-GCN BU/Text 0.177 +0.10 0.174 +0.10 0.163£0.10 | 0.143 +0.08 0.180 + 0.10 0.145 £+ 0.08
EBGCN BU/Text 0.321 + 0.30 0.380 + 0.31 0.270 £ 0.29 | 0.154 +0.08 0.160 £ 0.11 0.156 £ 0.09
Bi-GCN BU/Text EBGCN BU/Text | 0.211 +0.11 0.356 + 0.14 0.213 +0.11 0.162 £ 0.08 0.297 +0.11 0.167 £+ 0.09
EBGCN TD/Edge 0.192 +0.09 0.155 + 0.08
Bi-GCN TD/Edge | Bi-GCN BU/Edge 0.187+0.10 — — 0.149 + 0.08 — —
EBGCN BU/Edge 0.186 + 0.10 0.149 + 0.08
Bi-GCN BU/Edge 0.363 £ 0.32 0.194 £ 0.10
EBGCN TD/Edge | gpGeN BU/Edge | 0.335 +0.29 - - 0.201 £ 0.09 - -
Bi-GCN BU/Edge | EBGCN BU/Edge 0.369 + 0.29 — — 0.237 +0.12 — —

TABLE II: GCN-wise Szymkiewicz-Simpson Similarities for PHEME and Twitter15/16

Model/Output Method/Dataset
Anchor Comparison LRP/PHME Grad-CAM/PHEME | c-EB/PHEME LRP/Twitter Grad-CAM/Twitter | c-EB/Twitter
EBGCN TD/Text | 0.462 £ 0.27 0.380 + 0.27 0.438 £0.30 0.286 +0.12 0.492 £0.15 0.332+0.13
Bi-GCN TD/Text Bi-GCN BU/Text | 0.222 4+0.14 0.167 +0.14 0.227 £0.14 0.236 £0.11 0.393 £0.18 0.244 £0.12
EBGCN BU/Text | 0.367 4 0.23 0.196 + 0.21 0.348 £+ 0.27 0.246 +0.11 0.233 +0.16 0.246 +0.12
EBGCN TD/Text Bi-GCN BU/Text | 0.429 £ 0.33 0.439+0.30 0.374+0.33 | 0.243+0.12 0.295 +0.13 0.246 +0.12
EBGCN BU/Text 0.466 £ 0.33 0.531 £0.37 0.388+0.37 | 0.258 +0.12 0.263 £ 0.15 0.261 £0.13
Bi-GCN BU/Text EBGCN BU/Text | 0.456 & 0.29 0.677 +0.21 0.446 +£0.31 | 0.271+0.12 0.432 +0.20 0.277 +£0.12
EBGCN TD/Edge | 0.457 £0.29 0.260 £+ 0.12
Bi-GCN TD/Edge | Bi-GCN BU/Edge | 0.456 £ 0.30 — — 0.254 £0.12 — —
EBGCN BU/Edge | 0.403 £ 0.27 0.252 £0.12
Bi-GCN BU/Edge | 0.505 + 0.32 0.315+0.14
EBGCN TD/Edge | ppieN BU/Edge | 0.482 + 0.30 - - 0.325 +0.13 - -
Bi-GCN BU/Edge | EBGCN BU/Edge | 0.536 £ 0.28 — — 0.371 £ 0.15 — —

contribution lists obtained in the previous steps to determine
the following relationships:

e Out Degree: By assessing the similarity between the
top-ranked nodes in the contribution list and the out
degree list, we can infer the model’s emphasis on the
dispersion within a node’s immediate neighbourhood. A
higher similarity indicates that the model has effectively
learned this dispersion feature.

o Betweenness: Evaluating the resemblance between the
top-ranked nodes in the contribution list and the between-
ness list helps us understand the model’s prioritization
of nodes that significantly influence a larger number
of downstream nodes. This signifies dispersion over the
entire graph, indicating the model’s recognition of nodes
that serve as conduits to the rest of the graph beyond the
immediate neighbourhood.

o Closeness/Farness: Analyzing the overlap between the
top-ranked nodes in the contribution list and the nodes in
the BU graph with low closeness provides insights into
the model’s ability to distinguish graphs based on longer
propagation. Conversely, if there is a significant overlap
with nodes having high farness (reciprocal of closeness),
it indicates the model’s capability to recognize graphs
with shorter propagation.

By examining these relationships, we can better understand
how the model captures and learns various propagation and
dispersion features within the graph.

V. EXPERIMENTS

In this section, we outline the data pre-processing and
training methodology employed for the two models under

investigation. Subsequently, we provide details of the experi-
ments conducted using the trained models. Finally, we present
the obtained results and provide a comprehensive analysis of
our findings.

A. Data Pre-processing and Training Procedure

We utilized the raw data from the PHEME dataset provided
by Kochkina et al. [13] to generate tweet embeddings. To
achieve this, we employed a multilingual BERT model pre-
trained on Wikipedia articles [29]. The tweet embeddings
were obtained using the pooled representation used by BERT
in the next sentence prediction. Given that some events in
the PHEME dataset involve languages other than English,
we opted for a multilingual BERT. To accommodate the new
input vector size, we made slight modifications to the original
models by reducing the input dimension from 5000 to 768. For
the Twitter 15/16 dataset, we could not obtain the raw data as
most of the tweets were deleted by Twitter, so we used the
preprocessed data generated by Ma et al. [6]

For training both models, we largely followed the default
settings as per the source code obtained from their respective
GitHub repositories. Both models featured a hidden layer of
size 64, with a dropout rate of 0.2 for both TD and BU
graphs. The learning rate was set at 0.0005, with a weight
decay of 0.0001, and a mini-batch size of 32. We trained
both models for a maximum of 200 epochs, employing early
termination when the validation loss remained stagnant for
10 epochs. To ensure optimal model training under these
settings, we implemented a learning rate scheduler that reduces
the learning rate upon reaching a loss plateau. Additionally,
due to the class imbalance present in the PHEME dataset,
we incorporated class weighting into the loss function during



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE III: Bi-GCN Classwise Jaccard Similarities for PHEME and Twitter15/16

Class/Model/Output Method/Datatset
Anchor Comparison LRP/PHEME | Grad-CAM/PHEME | c-EB/PHEME | LRP/Twitter | Grad-CAM/Twitter | c-EB/Twitter
FR TD/Text 0.175 4+ 0.10 0.473 +0.22 0.177 £ 0.11 0.161 £ 0.09 0.423 £0.14 0.174 £0.10
NR TD/Text | TR TD/Text | 0.170 £ 0.10 0.458 4 0.22 0.172£0.11 | 0.157 +0.08 0.452 +£0.15 0.171 £0.10
UR TD/Text | 0.170 £0.10 0.470 £0.20 0.176 £0.11 | 0.158 4 0.08 0.462 £0.15 0.172 £ 0.09
FR TD/Text TR TD/Text 0.928 +0.12 0.807 £ 0.17 0.599 4+ 0.22 0.754 £ 0.24 0.567 £ 0.21 0.699 £+ 0.24
UR TD/Text 0.926 4+ 0.13 0.606 4+ 0.21 0.646 4+ 0.22 0.725 £0.25 0.575 £ 0.22 0.693 +0.24
TR TD/Text UR TD/Text 0.910 £0.14 0.648 +0.21 0.566 + 0.22 0.697 £ 0.28 0.628 £ 0.19 0.677 £ 0.28
FR BU/Text | 0.189 £0.11 0.319 £ 0.17 0.186 £ 0.11 | 0.165 £ 0.08 0.364 £0.15 0.178 £ 0.09
NR BU/Text | TR BU/Text | 0.190 £0.11 0.32140.18 0.18340.11 | 0.166 & 0.08 0.373+0.15 0.179 & 0.09
UR BU/Text | 0.189 +0.11 0.32140.18 0.18640.11 | 0.161 & 0.08 0.377 4+ 0.13 0.177 4 0.09
FR BU/Text TR BU/Text 0.982 4+ 0.07 0.452 4+ 0.20 0.778 £ 0.18 0.935 £0.17 0.489 £0.18 0.867 £ 0.19
UR BU/Text | 0.984 +0.06 0.465 £ 0.20 0.802 £0.17 | 0.927 40.19 0.483 +0.16 0.883 £0.17
TR BU/Text UR BU/Text 0.986 4+ 0.06 0.466 4+ 0.20 0.749 +0.19 0.912 +£0.20 0.479 £ 0.18 0.849 +£0.21
FR TD/Edge | 0.168 £0.11 0.166 £ 0.08
NR TD/Edge | TR TD/Edge | 0.167 +0.11 — — 0.162 £ 0.08 — —
UR TD/Edge | 0.168 4 0.11 0.164 + 0.08
TR TD/Edge | 0.933£0.13 0.766 £ 0.25
FR TD/Edge | yR TD/Edge | 0.920 +0.14 - - 0.750 + 0.25 - -
TR TD/Edge | UR TD/Edge 0.902 £ 0.15 — — 0.730 £ 0.27 — —
FR BU/Edge 0.405 4+ 0.33 0.214 £0.19
NR BU/Edge | TR BU/Edge 0.405 4+ 0.33 — — 0.226 £ 0.18 — —
UR BU/Edge 0.401 £ 0.33 0.212 £0.19
TR BU/Edge | 0.914 £0.19 0.548 £0.31
FR BU/Edge | R BU/Edge | 0.918 +0.20 - - 0.524 £ 0.32 - -
TR BU/Edge | UR BU/Edge 0.925 +0.19 — — 0.492 £0.33 — —
TABLE IV: Bi-GCN Classwise Szymkiewicz-Simpson Similarities for PHEME and Twitter15/16
Class/Model/Output Method/Datatset
Anchor Comparison | LRP/PHEME | Grad-CAM/PHEME | c-EB/PHEME | LRP/Twitter | Grad-CAM/Twitter | c-EB/Twitter
FR TD/Text | 0.284 £ 0.15 0.615 £ 0.20 0.288£0.15 | 0.269 £0.12 0.582£0.13 0.285 £0.13
NR TD/Text | TR TD/Text | 0.285+0.15 0.600 £ 0.20 0.280 £0.15 | 0.26340.12 0.608 +0.14 0.281+0.13
UR TD/Text | 0.28540.15 0.617 4 0.18 0.28540.15 | 0.264 +0.12 0.618 & 0.14 0.284 4+ 0.13
FR TD/Text TR TD/Text 0.958 4+ 0.08 0.882 +0.11 0.724 +0.18 0.833 £0.20 0.700 £ 0.18 0.795 + 0.20
UR TD/Text 0.956 4 0.08 0.733 £ 0.17 0.763 + 0.17 0.810 £0.21 0.705 £ 0.19 0.793 £0.19
TR TD/Text UR TD/Text 0.946 4+ 0.09 0.765 + 0.17 0.696 + 0.19 0.785+0.23 0.754 £ 0.16 0.770 £ 0.23
FR BU/Text | 0.304£0.15 0.459 £ 0.19 0.299 £0.15 | 0.275 £0.12 0.517 £ 0.16 0.293 £ 0.12
NR BU/Text | TR BU/Text | 0.305+0.15 0.459 4 0.20 0.297+0.15 | 0.276 £ 0.12 0.526 & 0.16 0.295 £ 0.12
UR BU/Text | 0.305+0.15 0.460 4 0.20 0.3004+0.15 | 0.268 & 0.12 0.530 & 0.16 0.292 4 0.12
FR BU/Text | TR BU/Mext |0.990 £0.04 0.596 £0.19 0.863 £0.12 | 0.956 £0.12 0.636 £0.17 0.914 £0.15
UR BU/Text | 0.991 +0.04 0.610 4 0.19 0.880+0.11 | 0.948+0.15 0.635+ 0.15 0.927 4+ 0.13
TR BU/Text UR BU/Text 0.992 4+ 0.04 0.610 +0.19 0.843 +0.13 0.937+£0.16 0.628 £0.17 0.900 £ 0.16
FR TD/Edge | 0.275 £0.15 0.276 £ 0.12
NR TD/Edge | TR TD/Edge | 0.273 +0.15 — — 0.270 £ 0.12 — —
UR TD/Edge | 0.274+0.15 0.274 £ 0.12
TR TD/Edge | 0.960 £ 0.08 0.840 £ 0.20
FR TD/Edge | yR TD/Edge | 0.952 + 0.09 - - 0.829 + 0.20 - -
TR TD/Edge | UR TD/Edge 0.941 +£0.10 — — 0.810 £0.22 — —
FR BU/Edge 0.544 4+ 0.32 0.321 £0.23
NR BU/Edge | TR BU/Edge 0.543 4+ 0.32 — — 0.338 £0.23 — —
UR BU/Edge 0.539 4+ 0.32 0.315£0.23
TR BU/Edge 0.960 +0.11 0.652 £ 0.29
FR BUEdge | R BU/Edge | 0.963 +0.11 - - 0.628 £ 0.31 - -
TR BU/Edge | UR BU/Edge 0.966 £+ 0.10 — — 0.592 £+ 0.32 — —

training. However, equal weighting was used during validation
to obtain a model with improved performance across all
classes. To train our model, we adopted a random stratified 5-
fold split when training on Twitter 15/16 data, consistent with
previous rumour detection studies [5]-[10]. When training on
PHEME data, we adopted an event-wise 9-fold split [10].

B. Contribution Analysis

To assess the contribution of textual and graphical features
at the GCN level in both Bi-GCN and EBGCN models, we
conducted a series of experiments. Additionally, we conducted
a class-wise contribution analysis to evaluate if the models

effectively learned distinct features for each class and to
measure their uniqueness across classes. In our analysis, each
model is subjected to our modified LRP technique. For a
comprehensive comparative study, we also employ Grad-CAM
[18] and Contrastive Excitation Backpropagation (c-EB) [19],
[20] as baseline methodologies. The rationale behind selecting
Grad-CAM and c-EB lies in their recognition as quintessential
examples of gradient-based and decomposition-based explain-
ability techniques, respectively. These techniques are pivotal
for understanding how decisions are made within the model.
In contrast, we consciously choose not to include perturbation-
based and surrogate-based methods like GNNExplainer [22].
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TABLE V: EBGCN Classwise Jaccard Similarities for PHEME and Twitter15/16

Class/Model/Output Method/Datatset
Anchor Comparison LRP/PHEME | Grad-CAM/PHEME | c-EB/PHEME | LRP/Twitter | Grad-CAM/Twitter | c-EB/Twitter
FR TD/Text 0.415 4+ 0.37 0.548 4+ 0.36 0.374 4+ 0.32 0.219 £ 0.20 0.316 £0.17 0.231 £0.19
NR TD/Text TR TD/Text 0.411 +£0.37 0.657 4+ 0.33 0.368 4+ 0.32 0.198 £0.18 0.339 £0.16 0.222 £0.17
UR TD/Text | 0.408 4+ 0.36 0.653 4 0.33 0.372+£0.33 | 0.20540.18 0.31140.17 0.224 +0.18
FR TD/Text TR TD/Text 0.958 +0.12 0.626 4+ 0.34 0.803 4+ 0.26 0.799 £ 0.26 0.400 £ 0.18 0.665 + 0.23
UR TD/Text 0.957 £ 0.12 0.580 4+ 0.34 0.816 4+ 0.24 0.794 £ 0.26 0.412 £0.18 0.658 +0.23
TR TD/Text UR TD/Text 0.948 +0.13 0.687 +0.32 0.799 4+ 0.26 0.779 £ 0.28 0.425 +£0.17 0.652 +0.25
FR BU/Text | 0.370 & 0.36 0.671 £ 0.31 0.336 £0.31 | 0.208 £0.19 0.307 £ 0.18 0.202 £ 0.13
NR BU/Text | TR BU/Text | 0.370 £ 0.36 0.677 4 0.30 0.3304+0.31 | 0.207 £0.18 0.308 £ 0.19 0.202 £ 0.13
UR BU/Text | 0.369 %+ 0.36 0.672 4 0.30 0.328 +0.31 | 0.207 £0.18 0.317 4 0.18 0.203 £ 0.13
FR BU/Text TR BU/Text 0.990 4+ 0.05 0.683 +0.31 0.847 +0.24 0.925 £ 0.20 0.320 £0.17 0.945 £0.13
UR BU/Text | 0.988 4+ 0.06 0.674 £+ 0.31 0.845+£0.24 | 0.91540.23 0.361+0.19 0.954 +0.11
TR BU/Text UR BU/Text 0.987 4+ 0.06 0.719 4+ 0.28 0.825 + 0.27 0.912 £0.22 0.366 +0.18 0.936 £ 0.15
FR TD/Edge | 0.428 £0.38 0.216 £0.20
NR TD/Edge | TR TD/Edge | 0.424 4 0.37 — — 0.200 £+ 0.18 — —
UR TD/Edge | 0.422 4 0.37 0.200 +0.18
TR TD/Edge | 0.962 £0.12 0.796 £ 0.26
FR TD/Edge | yR TD/Edge | 0.963 +0.12 - - 0.779 + 0.27 - -
TR TD/Edge | UR TD/Edge 0.956 +0.13 — — 0.774 £0.28 — —
FR BU/Edge 0.383 £ 0.35 0.221 £0.24
NR BU/Edge | TR BU/Edge 0.375 4+ 0.34 — — 0.221 +£0.23 — —
UR BU/Edge 0.367 £ 0.33 0.210 £0.23
TR BU/Edge | 0.896 £ 0.21 0.867 £0.24
FR BU/Edge | R BU/Edge | 0.882 + 0.22 - - 0.849 + 0.26 - -
TR BU/Edge | UR BU/Edge 0.882 +0.21 — — 0.832 £0.28 — —
TABLE VI: EBGCN Classwise Szymkiewicz-Simpson Similarities for PHEME and Twitter15/16
Class/Model/Output Method/Datatset
Anchor Comparison | LRP/PHEME | Grad-CAM/PHEME | c-EB/PHEME | LRP/Twitter | Grad-CAM/Twitter | c-EB/Twitter
FR TD/Text 0.521 +0.38 0.689 4+ 0.31 0.554 4+ 0.36 0.317 £0.25 0.458 £0.18 0.354 £ 0.25
NR TD/Text | TR TD/Text | 0.518 +0.38 0.787 4+ 0.27 0.5334+0.36 | 0.298 & 0.22 0.484 4+ 0.18 0.344 4+ 0.23
UR TD/Text | 0.517 4+ 0.38 0.786 4 0.26 0.5344+0.36 | 0.306 & 0.23 0.451 4+ 0.19 0.348 £ 0.23
FR TD/Text TR TD/Text 0.982 4+ 0.05 0.763 4+ 0.27 0.904 4+ 0.17 0.857 £0.22 0.550 £ 0.18 0.783 +£0.19
UR TD/Text 0.980 4 0.06 0.727 4+ 0.28 0.916 +0.15 0.856 £ 0.21 0.562 £0.18 0.775 £ 0.19
TR TD/Text UR TD/Text 0.976 + 0.07 0.810 +0.24 0.888 +0.19 0.840 £ 0.24 0.578 £0.17 0.762 + 0.21
FR BU/Text | 0.463 £ 0.39 0.787 £ 0.27 0.495+0.36 | 0.310£0.23 0.443£0.20 0.320 £ 0.17
NR BU/Text | TR BU/Text | 0.462 + 0.39 0.801 4 0.26 0.47940.35 | 0.309 £ 0.23 0.442 £ 0.21 0.318 +0.17
UR BU/Text | 0.462 +0.39 0.794 4 0.26 0.47940.35 | 0.309 & 0.23 0.454 & 0.20 0.320 4 0.17
FR BU/Text | TR BU/Mext | 0.995 £0.03 0.801 £0.26 0.926 £0.16 | 0.944£0.16 0.461 £0.19 0.966 £0.10
UR BU/Text | 0.994 4+ 0.03 0.794 4 0.26 0.926 +0.16 | 0.933+0.19 0.502 + 0.21 0.973 4 0.08
TR BU/Text UR BU/Text 0.993 4+ 0.03 0.837 4+ 0.22 0.894 4+ 0.21 0.934 £0.18 0.511 £ 0.20 0.959 £0.11
FR TD/Edge | 0.530 £0.39 0.314 £0.25
NR TD/Edge | TR TD/Edge | 0.527 & 0.38 — — 0.301 £ 0.22 — —
UR TD/Edge 0.525 4+ 0.38 0.301 +£0.23
TR TD/Edge | 0.983 £ 0.06 0.857 £ 0.21
FR TD/Edge | yR TD/Edge | 0.984 +0.06 - - 0.842 + 0.23 - -
TR TD/Edge | UR TD/Edge 0.979 4+ 0.07 — — 0.836 £ 0.24 — —
FR BU/Edge 0.490 £+ 0.36 0.308 £ 0.28
NR BU/Edge | TR BU/Edge 0.490 £+ 0.35 — — 0.314 £ 0.27 — —
UR BU/Edge 0.484 +0.35 0.297 £ 0.27
TR BU/Edge 0.954 +0.10 0.905 £+ 0.19
FR BUEdge | R BU/Edge | 0.946 +0.11 - - 0.887 + 0.22 - -
TR BU/Edge | UR BU/Edge 0.947 +£0.11 — — 0.873 £0.24 — —

This exclusion is based on the premise that such techniques
do not effectively trace the information flow within the model,
which is essential for our objective of comprehending the
internal mechanics of these Graph Convolutional Network
(GCN)-based models. Our approach is thus tailored to provide
insight into the actual inner workings of the models, aligning
with the specific requirements of our study.

Using the obtained contribution maps, we identified nodes
with values higher than the upper quartile threshold. To
compare the sets of selected nodes, we computed Jaccard
Similarity and Szymkiewicz-Simpson Similarity. Each exper-
iment involved analyzing the respective models for each split

on the test set. To ensure a meaningful comparison, we
excluded data samples with fewer than 20 nodes in their
graph. After filtering out graphs with less than 20 nodes, we
are left with 1799 remaining graphs for PHEME and 1294
remaining graphs for Twitter 15/16, providing sufficient data
for our analysis. To facilitate the examination of similarity
distributions, we represented the Jaccard and Szymkiewicz-
Simpson Similarities using split violin plots. These plots depict
the quartiles (upper, lower, and median) using dashed lines
in green, blue, and black, respectively, while the mean is
represented by a solid red line.

1) GCN-wise Contribution: First, we examine the GCN-
wise text contributions to determine if there are notable dif-
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ferences in the types of text features learned by the GCNs for
each of the four classes. Our findings are summarized in Tables
I and II. In these tables, we primarily showcase the results
obtained from our modified LRP, as the Grad-CAM and c-EB
baselines do not effectively identify graphical contributions. To
enhance our understanding of these findings, we present visual
distributions derived from the modified LRP applied to the
PHEME dataset. The choice of PHEME for in-depth analysis
is driven by two factors. Firstly, the preprocessing procedure
for the Twitter15/16 dataset is not transparent to us, rendering
it less suitable for a detailed study. Secondly, Twitter15/16
relies on vector representations of a 5000-word vocabulary,
leading to potential data leakage between training and test
sets. This leakage stems from the specific nature of the vector
representations employed. Despite these considerations, it is
noteworthy that the overall results obtained from our method
align closely with those from the baseline techniques.

Surprisingly, we observe that the similarity distributions
across the four classes exhibit remarkable similarities across
the four GCNs. For brevity, we present the consolidated results
for all classes in Fig. 2. Next, we investigate the GCN-
wise edge contributions to assess whether there are distinct
disparities in the types of graph features learned by the GCNs
for each of the four classes. Similar to the text contributions,
we observe consistent trends in the similarity distributions and
provide the compiled results in Fig. 3. Upon analyzing the
figures, we observe that, in general, the TD and BU GCNs in
EBGCN exhibit higher similarity in terms of learned text and
graph features compared to those in Bi-GCN. However, it is
important to note that even within the comparisons between
GCNs, the similarities remain relatively low. This indicates
that each GCN indeed learns distinct textual and graphical
features.

2) Class-wise Text Contribution: To gain deeper insights
into the class differences and identify unique text features
learned by the GCNs for each class, we compare the top
contributors within the same GCN for each class. The results
are presented in Table III, IV, V, VI with deeper analysis
shown in Fig. 4, 5, 6, and 7. From the figures, we observe that
each GCN demonstrates the ability to learn distinct features
for the Non-Rumour (NR) class, as indicated by the low
similarities when compared to the False-Rumour (FR), True-
Rumour (TR), and Unverified-Rumour (UR) classes. However,
it is noteworthy that while the TD GCN in Bi-GCN suc-
cessfully captures more distinct features between the FR, TR,
and UR classes, the BU GCN in Bi-GCN and both GCNs in
EBGCN struggle to learn distinct text features. Examining Fig.
5, 6, and 7, we observe remarkably high similarities, almost
reaching 1, for the comparisons between the three classes.
However, for the BU GCN in Bi-GCN, we note that the median
and lower quartile values in the similarity distribution for
comparisons between NR and FR/TR/UR are higher compared
to both the TD and BU GCNs in EBGCN. This suggests that
EBGCN exhibits greater differences in textual features learned
between the NR class and the FR/TR/UR classes. This finding
potentially contributes to the superior performance of EBGCN
compared to Bi-GCN.
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Fig. 2: Similarity between Upper Quartile Text Contributors
for all Classes

3) Class-wise Edge Contribution: To examine the differ-
ences in class-specific graphical features learned by each GCN,
we analyze the top contributors among the edges for each class
within the same GCN. The corresponding results are illustrated
in Fig. 8, 9, 10, and 11. From the figures, we observe a similar
trend in the distributions as observed in the class-specific text
contributions. Similar to the text contributions, each GCN
demonstrates the ability to learn distinct graphical features
for the NR class while exhibiting less distinction between
the FR, TR, and UR classes. Notably, the TD GCN in Bi-
GCN shows greater capability in learning distinct graphical
features across all classes, whereas the other GCNs exhibit
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Fig. 3: Similarity between Upper Quartile Edge Contributors
for all Classes

relatively lower distinction in their learned graphical features
for the FR, TR, and UR classes. Furthermore, in Fig. 10, we
observe even less dissimilarity between the NR class and the
other three classes compared to the dissimilarity observed in
the text contributions. Conversely, both the TD and BU GCNs
in EBGCN demonstrate greater dissimilarity between the NR
class and the FR/TR/UR learned graphical features.

C. Importance of Graph Structure

To assess the significance of graph structure, we analyze the
class-specific similarities between the upper quartile contribu-
tors for each GCN under different modifications. Notably, we
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Fig. 4: Similarity between Upper Quartile Text Contributors
for Bi-GCN TD GCN

observe interesting findings when examining the modifications
to graph structure.

In the case of the TD GCN in Bi-GCN, as depicted in Fig.
12, the distributions appear highly similar to each other, except
for the upper quartile values. From the figure, it is evident
that the top contributors for the modified graph structures bear
considerable resemblance to those for the unmodified graph.
This similarity is observed across all four classes, suggesting
that, for the Bi-GCN TD GCN, graph structure has limited
importance as it does not significantly alter the top contributors
for all four classes. Conversely, for the TD GCN in EBGCN,
Fig. 13 reveals a contrasting result. The similarity distributions



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

EBGCN NR TD VS
1.00 [ Jaccard
[ Szymkiewicz-Simpson
0.75
0.50
0.25
0.00
EBGCN FR TD EBGCN TR TD EBGCN UR TD
EBGCN FRTD VS
1.00
0.75
0.50
0.25
[ Jaccard
0.00 [ Szymkiewicz-Simpson
EBGCN NR TD EBGCN TR TD EBGCN UR TD
EBGCN TR TD VS
1.00
0.75
0.50
0.25
[ Jaccard
0.00 [ Szymkiewicz-Simpson
EBGCN NR TD EBGCN FR TD EBGCN UR TD
EBGCN UR TD VS
1.00
0.75
0.50
0.25
[ Jaccard
0.00 [ Szymkiewicz-Simpson
EBGCN NR TD EBGCN FR TD EBGCN TR TD

Fig. 5: Similarity between Upper Quartile Text Contributors
for EBGCN TD GCN

demonstrate that the top contributors for the modified graphs
differ considerably from those of the unmodified graph across
all four classes. This indicates that graph structure in EBGCN
plays a significant role, as it notably influences the results.

Similar trends emerge when analyzing the BU GCNs in
both Bi-GCN and EBGCN. Fig. 14 and 15 illustrate that
edge deletion leads to distinct top contributors in all four
classes. However, an intriguing observation is that setting
edge weights to 0.5 and 2.0 produces comparable results.
In both cases, the similarities between these modified graphs
and the unmodified graph approach 1 across all four classes.
This finding suggests that the edge weights used within the
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Fig. 6: Similarity between Upper Quartile Text Contributors
for Bi-GCN BU GCN

GCNs are likely less than 0.5. Notably, in the BU GCN, a
node’s representation incorporates more information from its
neighbours compared to the TD GCN, which only receives
information from a single neighbour. The results of the edge
deletion experiment indicate that the BU GCNs emphasize the
impact of textual contributions on model predictions, as the
edges facilitate a richer node representation. Simultaneously,
the minimal changes in top contributors for the modified
edge weights experiments demonstrate that although edges are
important, the BU GCN assigns greater significance to the
textual information originating from the node itself.
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Fig. 7: Similarity between Upper Quartile Text Contributors
for EBGCN BU GCN

D. Latent Propagation and Dispersion Features

Finally, to investigate the latent propagation and dispersion
features learned by the GCNs, we compare the top contributors
for each GCN with the top-ranked nodes based on centrality
measures for all four classes. The summarized results are
presented in Tables VIII and VII, including the mean and
standard deviation. Notably, the similarities across the four
classes are quite similar. This finding challenges the assump-
tion that GCNs would be better equipped to capture the unique
latent propagation and dispersion features of rumours and non-
rumours, consequently leading to improved performance in
rumour detection.
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Fig. 8: Similarity between Upper Quartile Edge Contributors
for Bi-GCN TD GCN

In addition to this observation, we find that both the
TD and BU GCNs in Bi-GCN exhibit a stronger focus on
nodes with high out-degree. This is evident from the higher
similarities between the top-ranked nodes for out-degree and
the top contributors for the TD and BU GCNs in Bi-GCN,
as compared to other centrality measures. Furthermore, we
observe that the TD GCN in Bi-GCN pays particular attention
to leaf nodes in the graph, as indicated by the second-highest
similarities for farness, following out-degree.

In the case of EBGCN, both the TD and BU GCNs

demonstrate lower similarities, suggesting a reduced emphasis
on propagation and dispersion features. This observation is
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Fig. 9: Similarity between Upper Quartile Edge Contributors
for EBGCN TD GCN

especially pronounced for the TD GCN in EBGCN, which
exhibits notably low similarities across all four centrality mea-
sures. These results indicate that EBGCN does not assign as
much importance to nodes considered significant by classical
centrality measures, implying that its improved performance
stems from its ability to better capture textual features. How-
ever, an interesting finding is that the farness measure exhibits
the highest similarity for the BU GCN in EBGCN, which
contrasts with the pattern observed for the BU GCN in Bi-
GCN.
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Fig. 10: Similarity between Upper Quartile Edge Contributors
for Bi-GCN BU GCN

VI. CONCLUSION

The experiments demonstrate that the TD GCN in Bi-GCN
learns more distinct textual features among the four GCNs,
while the BU GCN in Bi-GCN and both GCNs in EBGCN
learn more similar textual features. Similarly, in terms of edge
contributions, the BU GCN in Bi-GCN and the two GCNs
in EBGCN exhibit greater similarity, whereas the TD GCN
in Bi-GCN displays more distinct differences between the
classes. This highlights the significance of the edge inference
module in EBGCN, as it alters the behaviour of the TD GCN.
Furthermore, the results of the experiments evaluating graph
importance reveal that both GCNs in EBGCN rely more on
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Fig. 11: Similarity between Upper Quartile Edge Contributors
for EBGCN BU GCN

neighbouring nodes for their node representations. This, along
with the findings for the BU GCN, underscores the importance
of neighbouring nodes in learning node representations while
demonstrating how edge inference can address issues related
to poorer node representations, such as those learned by the
TD GCN in Bi-GCN.

Lastly, the experiments on latent propagation and dispersion
feature learning demonstrate that EBGCN assigns less impor-
tance to nodes considered significant by classical centrality
measures compared to Bi-GCN. Both GCNs in Bi-GCN cap-
ture dispersion features more effectively than EBGCN, and the
TD GCN in Bi-GCN also captures propagation features well.
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Fig. 12: Similarity between Upper Quartile Contributors for
Bi-GCN TD GCN with Modified Graph Structure

These results indicate that superior performance arises from
the learning of better textual features, rather than from the
implicit learning of graphical features, as previously believed.
Particularly, the edge inference module in EBGCN enables
the model to select relevant textual features more effectively
compared to Bi-GCN. Furthermore, the results indicate that the
improved performance of GCNs, especially EBGCN, stems
from better learning of textual features, rather than from
learning unique latent propagation and dispersion features, as
initially assumed. In the future, we plan to apply the same
techniques to analyse GCNs in Fake News Detection.
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