
Get Global Guarantees: On the Probabilistic Nature of
Perturbation Robustness

Wenchuan Mu

wenchuan_mu@sutd.edu.sg

Singapore University of Technology and Design

Singapore

Kwan Hui Lim

kwanhui@acm.org

Singapore University of Technology and Design

Singapore

ABSTRACT
Robustness is a critical requirement for deploying machine learn-

ing models in safety-sensitive domains, where even imperceptible

input perturbations can lead to hazardous outcomes. However, ex-

isting robustness assessment techniques prior to deployment often

face a trade-off between computational feasibility and measure-

ment precision, limiting their effectiveness in practice. To address

these limitations, we provide a systematic comparative study of pre-

vailing robustness definitions and their corresponding evaluation

methodologies. Building on this analysis, we propose tower robust-
ness, which is a novel and practical concept setting out from a global

perspective. Further, we provide upper and lower bounds of tower

robustness, based on hypothesis testing, for quantitative evaluation,

enabling more rigorous and efficient pre-deployment assessments.

Through empirical investigation, we demonstrate that our approach

provides reliable robustness assessments. These findings advance

the systematic understanding of robustness and contribute a practi-

cal framework for enhancing the safety of machine learning models

in safety-critical applications.

CCS CONCEPTS
• Theory of computation→ Adversarial learning; •Mathemat-
ics of computing → Hypothesis testing and confidence interval
computation.
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1 INTRODUCTION
Machine learning has transformed numerous fields, enabling break-

throughs in image recognition [9, 12], natural language process-

ing [10, 43], and autonomous systems [11]. Particularly in safety-

critical domains, such as self-driving vehicles [17, 41], medical diag-

nosis [30, 38], and industrial control systems [2], the reliability and

robustness of neural networks are paramount. In these contexts,
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even minor perturbations in input data can lead to severe conse-

quences, highlighting the need for rigorous robustness evaluation

prior to deployment.

Model robustness evaluation is well-studied but remains chal-

lenging. Formal verification is one established approach, but it often

suffers from incomplete problem formulations [14], failing to cap-

ture the full range of real-world perturbations. In addition, verifica-

tion techniques are typically computationally expensive, rendering

them impractical for large-scale models [46]. These limitations call

for evaluation methods that are both more comprehensive and

computationally feasible.

To address these gaps, we explore probabilistic robustness assess-

ment, which aims to estimate a model’s failure probability under

adversarial perturbations. While existing probabilistic methods

frequently rely on approximations, such approximations risk over-

looking critical adversarial instances [1], potentially overestimating

model robustness.

Contribution 1: In this work, we propose a new concept tower
robustness, a probabilistic measure of robustness from a global per-

spective (Section 3). Following this, we come up with its upper

and lower bounds (TEB-U/TEB-L) that leverage exact binomial

tests to provide statistical guarantees (Section 4). Tower robustness

enables precise quantification of failure probabilities, yielding an

interpretable and actionable robustness measure. By grounding

robustness assessment in exact statistical principles, our approach

offers a more realistic characterisation of model behaviour in real-

world deployments.

Contribution 2:To support adoption, we release an open-source
implementation at https://github.com/cestwc/tower-robustness, pro-

viding researchers and practitioners with a user-friendly and statis-

tically rigorous evaluation tool. We further demonstrate the prac-

ticality of our approach through empirical evaluations on several

neural network models.

2 PRELIMINARIES
This section discusses the prerequisite knowledge. We first intro-

duce the notations of each quantity. After that, we review the essen-

tials of statistical learning, e.g., data sampling, objective functions,

and neural networks.

2.1 Notations
We use the simple letter styles as given in Table 1 to distinguish

different types of mathematical objects. Note that the letter 𝑃 is

reserved for probability, and E for expectation. The notation (e.g.,
for variables) is generally insensitive to whether an object is a scalar

or a vector. Subscripts or superscripts in variable names are simply

part of the name, not as indices. In fact, we do not index into vector

https://doi.org/10.1145/3746252.3761039
https://doi.org/10.1145/3746252.3761039
https://github.com/cestwc/tower-robustness
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Table 1: Mathematical object letter styles (e.g., using letter A)

A variable or variable function 𝑎

A random variable or random variable function a
A set A
A distribution 𝐴

A function whose value is 1 if 𝑎 is true, 0 otherwise 1𝑎

variables or sets throughout this manuscript. Also, lowercase Greek

letters are always used for scalars.

2.2 Data, Distribution, and Samples
In the following, we briefly review the probability and statistics

background of this work. Let 𝐷 denote a joint probability distri-

bution for random variables x and y, such that for some positive

integer 𝑛, a sample from 𝐷 could look like

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)} (1)

where 𝑛 is the sample size. In practice, we are usually given the

sample. For example, MNIST [19] dataset could be seen as a sample

drawn from the distribution of handwritten digits
1
. If we further

look into the set of MNIST training images and testing images, they

can be considered two samples drawn from this distribution where

𝑛 = 60, 000 for the training set and 𝑛 = 10, 000 for the testing set.

Let X be the outcome space of x, and Y be the outcome space of

y. Intuitively, in the MNIST context, X would be the set containing

all 28×28 pixel greyscale images, and Y would be a set of integers

from 0 to 9.

Often, we are interested in the expected value of some function

𝑓 (x, y), denoted by E(𝑓 (x, y)) and computed as follows.

E [𝑓 (x, y)] =
∫
Y

∫
X
𝑓 (𝑥,𝑦)𝑃 (x = 𝑥, y = 𝑦) 𝑑𝑥 𝑑𝑦 (2)

In practice, if a sample is large enough, the law of large numbers

ensures that the sample average converges to the true expected

value, i.e., as 𝑛 → ∞

E [𝑓 (x, y)] ≈ 1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 , 𝑦𝑖 ). (3)

2.3 Learning and Neural Models
Let us denote a function ℎ : X → Y. Essentially, X is considered

an input feature space, and Y is considered a label space, while

a model function ℎ predicts a label from a given feature. A good

model makes correct predictions, i.e., we want to maximise

E

[
1ℎ (x)=y

]
. (4)

Its practical measurement, however, often relies on a finite set.

According to approximation (3), we can rewrite expression (4) as

expression (5). Indeed, expression (5) denotes the commonly used

test accuracy metric when the set is the testing set.

1

𝑛

𝑛∑︁
𝑖=1

1ℎ (𝑥𝑖 )=𝑦𝑖 (5)

1
To view MNIST as an unbiased sample, we might as well say it is from a distribution

of American employees’ and high school students’ handwritten digits.

The process of actively optimising the model is referred to as

learning (or training). Learning is complicated and may be done

empirically through various forms [6, 8, 29, 34]. This is primarily

because we only have access to a finite training set of data that

theoretically does not suffice to calculate the objective function, i.e.
expression (4) or (5). Consequently, a common practice is to define

an optimisation problem (typically the objective function) that is

fully measurable from the training set. For instance, the empirical

risk minimisation (ERM [34]) method is defined as follows, which

is one of the most straightforward learning strategies.

Definition 2.1 (Empirical risk minimisation). Define a density

function 𝑔 : X × Y → [0, 1] such that ∀𝑥 ∈ X, 1 =
∑

𝑦∈Y 𝑔(𝑥,𝑦).
Supposedly, this density reflects how likely a prediction on 𝑥 will

be 𝑦, i.e., 𝑔(𝑥,𝑦) ≡ 𝑃 (ŷ = 𝑦 | x = 𝑥), where ŷ denotes the random

variable of prediction. In this way, expression (4) can be rewritten as

Ex [⟨𝑃 (y | x), 𝑃 (ŷ | x)⟩], where ⟨ , ⟩ stands for inner product. Then,
instead of directly maximising this inner product, ERM minimises

the Kullback-Leibler divergence (KL divergence) between these two

conditional probabilities. When it comes to the training sample

with size 𝑛, the term to be minimised is as follows.

− 1

𝑛

𝑛∑︁
𝑖

log𝑔(𝑥𝑖 , 𝑦𝑖 ) (6)

Obtaining ℎ from 𝑔 can be straightforward, e.g., one common prac-

tice is to take ℎ(𝑥) := arg max𝑦 𝑔(𝑥,𝑦).

Another key aspect of learning, which is orthogonal to the choice

of the objective function, is the model architecture. While the opti-

misation process (e.g., minimising empirical risk) is general, the way

we represent the model function ℎ can vary significantly, and some

representations may perform better than others in practice [12].

A common and effective approach is to use a parametrised model,

such as a neural network. In a simplified view, a neural network

consists of (1) a fixed structural design that defines the topology of

the network (e.g., number of layers, connections), and (2) variable

parameters such as numerical weights and biases. During train-

ing, the optimisation algorithm searches over the parameter space,

while the structure remains unchanged.

Definition 2.2 (Neural Network Models). If ℎ is a neural model, we

can re-express it as ℎ(𝑥) := arg max𝑦 𝑔(𝑥,𝑤,𝑦), where 𝑔 : X ×W ×
Y → [0, 1] and ∀𝑥 ∈ X,∀𝑤 ∈ W, 1 =

∑
𝑦∈Y 𝑔(𝑥,𝑤,𝑦). Set W is

the entire search space of parameters. Generally, the (sub)gradients

𝜕𝑔/𝜕𝑤 and 𝜕𝑔/𝜕𝑥 are both available.

2.4 Adversarial Examples
Maximising the probability of making correct predictions is gen-

erally a sound and intuitively reasonable objective. Yet, recent re-

search has raised important questions about whether this objective

is sufficient on its own. One concern arises from the context of

adversarial examples. Inputs that have been slightly perturbed in

ways often imperceptible to humans, yet cause a model’s prediction

to flip from correct to incorrect. This could be a security problem

in practice, e.g., a subtly altered stop sign may be misread by an

autonomous vehicle as a speed limit sign.
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Although it remains an open question whether the adversarial

example (AE) issue can be solved inherently by optimising ex-

pression (4), empirical evidence shows a troubling trade-off. Some

models with high test accuracy perform poorly under adversarial

perturbations, while others with better adversarial example perfor-

mance often suffer from lower test accuracy. Here, we describe the

formal definitions of adversarial examples for subsequent analysis.

Definition 2.3 (Adversarial Example). For real number 𝑝 ≥ 1,

𝜖 ∈ [0, 1], given any input 𝑥 from space X, we have that 𝑥 ′ a (mea-

surable) (𝑝, 𝜖)-neighbour of 𝑥 if and only if 𝑥 ′ ∈ X∧ ∥𝑥 − 𝑥 ′∥𝑝 ≤ 𝜖 .

For any model ℎ : X → Y, for any paired (𝑥,𝑦) ∈ X × Y, we have
that a (𝑝, 𝜖)-neighbour 𝑥 ′ of 𝑥 is also a (𝑝, 𝜖)-AE of 𝑥 (regarding

this ℎ and this 𝑦) if and only if ℎ(𝑥) = 𝑦 ∧ ℎ(𝑥 ′) ≠ 𝑦. Additionally,

given (𝑥,𝑦), let us define a condition 𝑐AE (𝑥,𝑦;𝑝, 𝜖) or simply 𝑐AE
as there exists some (𝑝, 𝜖)-AE of (𝑥,𝑦). Formally,

𝑐AE (𝑥,𝑦; 𝑝, 𝜖, ℎ) := (ℎ(𝑥) = 𝑦) ∧
∃𝑥 ′ . 𝑥 ′ ∈ X ∧



𝑥 − 𝑥 ′



𝑝
≤ 𝜖 ∧ ℎ(𝑥 ′) ≠ 𝑦

(7)

Definition 2.3 is often the most intuitive andwidely accepted way

to define adversarial examples, as it aligns well with our understand-

ing of small, imperceptible perturbations causing misclassification.

However, it introduces a subtle issue, i.e., what if the original input
is misclassified, yet there exists a neighbour that is correctly clas-

sified? Does that imply we should treat the original input as the

“adversarial” point from the perspective of the neighbour?

Despite this ambiguity, Definition 2.3 is not flawed.We adopt this

definition as a foundation and demonstrate that different contexts

of robustness are given in Table 2.

3 TOWER ROBUSTNESS
In this section, we present tower robustness, which is a sound prob-

abilistic quantity of the perturbation robustness concept. First, we

describe the essence of robustness and revisit various observation

strategies for robustness to see why the concept of robustness has

not been captured well enough. After that, we propose tower ro-

bustness based on the tower law and formally show why this is a

reasonable measure of robustness.

3.1 Robustness, What Are We Actually
Observing?

While avoiding adversarial examples is commonly considered the

core of robustness
2
, the quantitative definition of robustness re-

mains an open problem. Empirically, there exist a few metrics to

measure robustness as demonstrated in Table 2, e.g., adversarial
attack failure rate, but there has never been an agreement on which

one truly represents robustness.

In the following, we aim to set this issue in a theoretical frame-

work.We start from this often overlooked question, i.e., what exactly
do we aim to maximise when we ask for greater robustness?

Note that in this study, we do not focus on specific optimisa-

tion strategies, e.g., adversarial training. Instead, we focus on the

objective functions on the evaluation side, e.g., test accuracy for

2
There are other loosely related concepts in the name of robustness, e.g., generalisation
robustness or compression robustness, which are orthogonal to our focus.

classification. In other words, we would like to measure the ro-

bustness of models and would not concern ourselves with how

these models have been built. Let us now walk through how each

robustness metric is currently defined de facto in practice.

Adversarial robustness and its bounds. The overall adversarial ro-
bustness of a model can be expressed as E[1𝑐AR ], or equivalently,
𝑃 (𝑐AR). Here, 𝑃 (𝑐AR) represents the probability that no adversarial

examples exist in the neighbourhood of a randomly chosen input.

Computing this probability directly is intractable, because even

simple high-dimensional data like an MNIST [19] image can have

over 10
200

neighbours.

A practical approach is to adversarially attack each testing case

by heuristically searching for adversarial examples within a limited

number of steps, rather than exhaustively checking all neighbours.

Under this method, if no adversarial example is found within the

search steps (i.e., ¬𝑐AA), we can infer ¬𝑐AR. However, if the attack
times out (i.e., 𝑐AA holds), we gain no information about 𝑐AR. In

other words, 𝑃 (𝑐AA) serves as an upper bound for 𝑃 (𝑐AR). The issue
is that 𝑃 (𝑐AA) depends on the specific attack method used, which

may not be fully independent of the model itself, especially in cases

like adversarial training where the attack procedure influences the

model. As a result, ranking models based on 𝑃 (𝑐AA) might not

reflect their ranking in terms of the adversarial robustness, 𝑃 (𝑐AR).
An alternative strategy is to define a condition 𝑐DC such that

𝑐DC → 𝑐AR, providing a lower bound for 𝑃 (𝑐AR). Unlike 𝑐AA, the
condition 𝑐DC does not rely on any attack process, but it is known

to be heavily influenced by the model choices. When 𝑐DC does not

hold, it remains possible that 𝑐AR still holds, but we have no way

to confirm this.

It might be imaginably possible that we can simultaneously lift

both the lower and upper bounds on 𝑃 (𝑐AR) to effectively improve

robustness. In practice, however, a substantial gap often remains

between these bounds, and it is rare to find models that make mean-

ingful progress on both fronts at once. As a result, these quantities

offer limited insight into true robustness.

Probabilistic robustness. Probabilistic robustness was originally pro-
posed to address the problem that high-accuracy models usually

lack robustness guarantees [31, 46]. To this end, the focused event is

modified from 𝑐AR to 𝑐PR, i.e., fromwhether there are no adversarial

examples to whether there are few enough adversarial examples.

However, this also makes the definition less interpretable, e.g., it
would read like maximising “the probability of misclassification

upon input perturbation is less than a tolerance level” [31]. Further-

more, the choice of this tolerance level (𝜅 as in Table 2) introduces

a new parameter that not only requires justification but aggravates

the complicatedness of robustness evaluation.

Worse, this 𝑃 (𝑐PR) form itself is not verifiable through a finite

number of samples, and the practical solution to provide such a

probabilistic robustness guarantee must read like maximising “the

probability of that the probability that the probability of misclas-

sification upon input perturbation is less than a tolerance level is

greater than or equal to a significance level” [46]. While this is

a reasonable choice out of practicality, it introduces yet another

new parameter (𝛼 as in Table 2), which makes the evaluation even

more confusing. These quantities risk becoming abstractions that

obscure more than they reveal: approximations that gesture toward
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Table 2: Various contexts of robustness. In any case, we are given a pair of input and label (𝑥,𝑦) from X × Y, and ℎ is the model.

Quantity Event formula Computable Meaning

Adversarial robustness 𝑐AR (𝑥,𝑦;𝑝, 𝜖, ℎ) := (ℎ(𝑥) = 𝑦) ∧ ¬∃𝑥 ′ . 𝑥 ′ ∈
X ∧ ∥𝑥 − 𝑥 ′∥𝑝 ≤ 𝜖 ∧ ℎ(𝑥 ′) ≠ 𝑦

Intractable 𝑐AR is true if there does not exist any adversarial example to this input-label pair, and false if there

do.

Adversarial attack

failure rate

𝑐AF (𝑥,𝑦;𝑝, 𝜖, ℎ, 𝑓
attack

) := ¬∃𝑥 ′ . 𝑥 ′ ∈
𝑓
attack

(𝑥,𝑦, 𝑝, 𝜖, ℎ) ∧ ∥𝑥 − 𝑥 ′∥𝑝 ≤ 𝜖 ∧ ℎ(𝑥 ′) ≠ 𝑦, where

𝑓
attack

(𝑥,𝑦, 𝑝, 𝜖, ℎ) ⊂ X

Yes 𝑐AF being false means we successfully find at least one adversarial example. 𝑐AF being true means

no adversarial example has been found yet, but we have no idea whether one will be found.

Adversarial accuracy 𝑐AA (𝑥,𝑦;𝑝, 𝜖, ℎ, 𝑓
attack

) := (ℎ(𝑥) = 𝑦) ∧ ¬∃𝑥 ′ . 𝑥 ′ ∈
𝑓
attack

(𝑥,𝑦, 𝑝, 𝜖, ℎ) ∧ ∥𝑥 − 𝑥 ′∥𝑝 ≤ 𝜖 ∧ ℎ(𝑥 ′) ≠ 𝑦

Yes 𝑐AA indicates the prediction on 𝑥 is correct, and no adversarial example has been found yet (again,

we do not know if one will be found). Otherwise, we get ⊢ ¬𝑐AA.

Deterministic certified

robust accuracy

To find 𝑐DC (𝑥,𝑦;𝑝, 𝜖, ℎ) such that

⊢ 𝑐DC (𝑥,𝑦;𝑝, 𝜖, ℎ) → 𝑐AR (𝑥,𝑦;𝑝, 𝜖, ℎ).
Yes, but not for

all 𝑥

Try to let a sufficient condition of 𝑐AR hold. Then, if 𝑐DC holds, we know that no adversarial exists

around the input. But if 𝑐DC does not hold, we do not get any implication.

Probabilistic robustness 𝑐PR (𝑥,𝑦;𝑝, 𝜖, ℎ, 𝜅) := 𝑃
Uniform,∥x′−𝑥 ∥𝑝≤𝜖 (ℎ(x

′) ≠ 𝑦) ≤
𝜅, for 0 < 𝜅 < 1/2

Unverifiable

from samples

𝑐PR hold if and only if the proportion of adversarial examples among neighbours is capped by a

real number 𝜅. Predicting the original 𝑥 correctly is not emphasised.

Probabilistic robust

accuracy

𝑐PRA (𝑥,𝑦; 𝑝, 𝜖, ℎ, 𝜅, 𝛼) :=

𝑃 (𝑃
Uniform,∥x′−𝑥 ∥𝑝≤𝜖 (ℎ(x

′) ≠ 𝑦) > 𝜅) ≤ 𝛼 , for

0 < 𝜅 < 1/2, 0 < 𝛼 < 1.

Yes When 𝑐PRA holds, the probability of 𝑐PR ≠ 1 is small, such that it is capped at a real value 𝛼 . When

𝑐PRA does not hold, it just means that we are not informed by this inequality.

the underlying phenomenon without fully capturing it. We argue

that pursuing a clearer and more principled definition of robustness

remains an essential direction.

Robustness might not be just about rates. As demonstrated in Table 2,

nearly every event involves a complex combination of multiple

factors. Although it is straightforward to compute an average across

all test cases, this does not necessarily mean that the events are

well-defined in a probabilistic sense.

A potential blind spot is that robustness might not have to be

represented as a rate (like all in Table 2). Intuitively, the measurable

quantity of robustness could be understood as an estimator of a

deeper property. Let us take a look at the accuracy counterpart, i.e.,
accuracy is not just a rate, but an unbiased estimator of a probabil-

ity, with clear statistical properties like expectation, variance, and

concentration bounds (e.g., Hoeffding’s inequality). In the next step,

we will find this property for robustness and present our definition.

3.2 The Probability of Misprediction Given Any
Neighbourhood

In the following, we introduce tower robustness, a property that

underpins measurable notions of robustness in a meaningful and

structured way. First, we state its formal definition. Then, using

the tower law (also known as the law of total expectation), we

show how this property encapsulates robustness and connects to

measurable quantities. Finally, we offer an interpretation from a

convolutional perspective to aid in understanding its implications.

Definition 3.1 (tower robustness). For tower robustness, we ask,
given a random neighbourhood, what is the probability of making

correct predictions? Formally, we are given a joint distribution of

x, y, where x has support X and y has support Y. For any model

ℎ : X → Y, its (𝑝, 𝜖)-tower robustness is defined as

𝑃∥x′−x∥𝑝≤𝜖
(
ℎ(x′) = y

)
, (8)

or equivalently

E∥x′−x∥𝑝≤𝜖
[
1ℎ (x′ )=y

]
. (9)

Intuitively, the tower robustness (TR) of a model under a given

distribution and specified (𝑝, 𝜖) would be a unique scalar. A higher

TR suggests a more robust model at the given setting. Note that

TR itself, as defined in Definition 3.1, is computable using finite

samples, but may be estimated with a variance. Thus, we propose

computable bounds of TR in Section 4.

3.2.1 Derivation of tower robustness and link to other robustness
quantities. To understand the rationale of tower robustness, we

start from the sense of deterministic certified robust accuracy (DC

accuracy). According to Table 2, DC accuracy can be written as∑𝑛
𝑖 1𝑐𝐷𝐶,𝑖

/𝑛, representing the proportion of test cases for which a

deterministic certification is achieved. While DC accuracy is typi-

cally viewed as unrelated to probabilistic behaviour unless explicitly

noted, we will demonstrate that it is, in fact, fundamentally proba-

bilistic in nature.

The probabilistic nature in deterministic robustness. The term

probabilistic robustness, when used in a deterministic context like

a recent systematisation of knowledge [23], is often ambiguous.

This ambiguity arises from that there are two ways of choosing

random variables. The first way uses x, y as random variable. That

is, for each given pair of data, the condition 𝑐DC is a (deterministic)

function value, and we aim to get

𝑃 (𝑐DC (x, y, 𝑝, 𝜖, ℎ)) . (10)

This is often overlooked, because we often resort to its unbiased

maximum likelihood estimation (MLE), i.e., DC accuracy. The sec-

ond way uses cDC as random variable. This particularly works

when given 𝑥,𝑦, we are not able to determine 𝑐DC and have to

guess whether it is true, e.g., when robustness verification is not

complete but already acquires some knowledge c
known

about this

testing case. This works within the neighbourhood of individual

given 𝑥,𝑦, rather than across samples. Formally, this could be ex-

pressed as 𝑃 (cDC | c𝑘𝑛𝑜𝑤𝑛 (𝑥,𝑦, 𝑝, 𝜖, ℎ)) .
In this study, we leverage the first way of choosing random vari-

ables, i.e., expression (10), to help understanding tower robustness.

Essentially, expression (10) represents the probability of achieving

deterministic certification for a random input-label pair from the

distribution. Furthermore, expression (10) is a sound lower bound

of 𝑃 (𝑐AR (x, y, 𝑝, 𝜖, ℎ)), i.e., adversarial robustness.
For a long time, 𝑃 (𝑐AR (x, y, 𝑝, 𝜖, ℎ)) has been seen well captur-

ing robustness. However, this measure comes with notable limita-

tions. First, its value is theoretically proven to be bounded within

a low range, primarily because excluding all adversarial exam-

ples is an inherently strict requirement. As a result, relying on
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𝑃 (𝑐AR (x, y, 𝑝, 𝜖, ℎ)) to quantify robustness can be misleading. Intu-

itively, it is akin to signing up for an extremely difficult chess match

and then scoring poorly. Merely attempting a hard challenge does

not demonstrate mastery. More importantly, when encountering

a new random input-label pair, one cannot determine in advance

whether adversarial examples are present. This uncertainty means

that robustness, in this context, remains probabilistic. Worse yet,

due to the typically low probability value, such a probabilistic esti-

mate provides little practical confidence. To intuitively understand

this, let us look at the following game example.

Example: Expected Payout from a Game

Imagine you play a carnival game where you are randomly

assigned to either Machine A (40% chance) or Machine B

(60% chance). Machine A pays $10 with a 50% chance and

$0 otherwise, while Machine B pays $5 with an 80% chance

and $0 otherwise. To find the expected payout, we calculate

the expected value for each machine: for Machine A, it is

0.5×10+0.5×0 = 5, and forMachine B it is 0.8×5+0.2×0 = 4.

Then, using the tower law, the overall expected payout is

0.4 × 5 + 0.6 × 4 = 2 + 2.4 =$4.40.

In an adversarial robustness scenario, consider a system like

“Machine A” that, with a 50% chance, shows zero adversarial exam-

ples, and with the remaining 50%, shows an unknown proportion

of adversarial examples, potentially many, say less than T%. The

expected adversarial example payout is then 0.5×0+0.5×T = 5T‰.

Like in the carnival game, it is the 5T‰ that matters practically.

With this idea, let us review the tower law formally.

Definition 3.2 (tower law). Let b be an integrable random variable,

i.e., E[|b|] < ∞. As E(b | a) is a random variable and a function of

a, we can take its expected value, and it can be shown that

E[E[b | a]] = E[b] (11)

Theorem 3.3. We are given a joint distribution of x, y, where x
has support X and y has support Y. For any model ℎ : X → Y, its
(𝑝, 𝜖)-tower robustness can be equivalently written as

E

[
𝑃

(
ℎ(x′) = y

��� 

x′ − x



𝑝
≤ 𝜖

)]
(12)

Proof. We apply the tower law to expression (9). First, we can

see that the premise holds, i.e., 1(∗) returns either 0 or 1, which

makes it an integrable function. Then, we confirm that for random

variables x′ and y, ∥x′ − x∥𝑝 ≤ 𝜖 and 1ℎ (x′ )=y are indeed a function
of (x, y). Then, we get

E

[
E

[
1ℎ (x′ )=y

��� 

x′ − x



𝑝
≤ 𝜖

] ]
. (13)

Since for any event c, we have 𝑃 (c) = 𝐸 [1c], we get our proof. □

Intuitively, Theorem 3.3 explains the tower robustness, i.e., we
first randomly sample a neighbourhood (around an input-label pair)

from the distribution, then we randomly pick a input-label pair from

this neighbourhood, we ask, what will be the probability that we

make a correct prediction on this picked pair? Next, we show the

connection between the tower robustness and 𝑃 (𝑐DC (x, y, 𝑝, 𝜖, ℎ)).

Corollary 3.4. DC accuracy is an unbiased estimator of a lower
bound of tower robustness. Formally,

𝑃 (𝑐DC (x, y, 𝑝, 𝜖, ℎ)) ≤ E

[
𝑃

(
ℎ(x′) = y

��� 

x′ − x



𝑝
≤ 𝜖

)]
(14)

Proof. We have known that

∑𝑛
𝑖 1𝑐𝐷𝐶,𝑖

/𝑛 is the sample mean of

𝑃 (𝑐DC (x, y, 𝑝, 𝜖, ℎ)), such that our focus is to show the inequality

above. It is sufficient if we can prove

∀𝑥,𝑦,¬
(
1𝑐DC (𝑥,𝑦,𝑝,𝜖,ℎ) > 𝑃

(
ℎ(x′) = 𝑦

��� 

x′ − 𝑥



𝑝
≤ 𝜖

))
. (15)

Since 1(∗) returns only 0 or 1, and probabilities are always non-

negative, we need only consider the case where the probability

is strictly less than 1. In this case, there must be a positive mea-

sure of adversarial examples, which implies that 𝑐DC is false. This

completes the proof. □

Intuitively, when trying to maximise the tower robustness, we

can still use DC accuracy as a sound lower bound to provide guaran-

tee. Yet, neither probabilistic robustness E[𝑐PR (x, y, 𝑝, 𝜖, ℎ, 𝜅)] nor
probabilistic robust accuracy E[𝑐PRA (x, y, 𝑝, 𝜖, ℎ, 𝜅, 𝛼)] are naturally
lower bounds of tower robustness, i.e., they may overestimate.

3.2.2 Tower robustness from a convolutional perspective. We now

draw a link from tower robustness to commonly adopted correct-

ness, i.e., expression (4). The link between the robustness of a given

distribution and the correctness of a convolved distribution has

been studied recently [44]. Here, we formally extend this perspec-

tive to tower robustness.

As we are sampling x, y (to get its neighbourhood) from the given

distribution and then sample within the neighbourhood, it could

be understood as adding two random variables. The first random

variable is x, representing the input from the joint distribution.

We denote the second random variable as t ∈ X and ∥t∥𝑝 ≤ 𝜖 .

Unsurprisingly, we can re-express x′ := x+t. Theoretically, sampling

of x and sampling of t are independent. Therefore, the probability
density function (PDF) of x′ can be expressed as

𝑝x′ (𝑥 ′) =
∫
X
𝑝x (𝑥)𝑝t (𝑡 − 𝑥)𝑑𝑥. (16)

Considering the joint distribution𝐷 of x, y, and that t is independent
of y as well, we can also express the conditional distributions in

convolution as follows.

𝑝x′,y (𝑥 ′, 𝑦) =
∫
X
𝑝x,y (𝑥,𝑦)𝑝t (𝑡 − 𝑥)𝑑𝑥 (17)

That is, (x′, y) ∼ 𝐷∗𝑝t. In this way, we can rewrite tower robustness
from expression (9) to the following form.

Ex,y∼𝐷∗𝑝t [ℎ(x) = y] (18)

Note that only for expression (18) we use x instead of x′ to denote

the perturbed input because we assume the distribution has been

changed so we no longer need to add perturbations again. As seen

expression (18) is in a highly consistent form with expression (4).

In other words, maximising robustness is indeed maximising some

special kind of correctness, and this depends on how much the

user/researcher would like to “melt” the original given distribution.



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Wenchuan Mu and Kwan Hui Lim

4 GLOBAL BOUNDS (LOWER AND UPPER) ON
TOWER ROBUSTNESS

Tower robustness can be estimated from finite samples without

bias, but we still need to control the variance of the estimators. To

establish a stricter formal guarantee in practice, we introduce TEB-

L, a computable tower robustness Lower bound through Tower(ed)

Exact Binomial tests.

In the following, we present TEB-L in a bottom-up style. First,

we describe how to test each individual input-label pair from a

given distribution. Then, we show how we can combine the test

results to provide guarantees.

4.1 Binomial Hypothesis Test With Exact
Solution

In this step, we are given a pair of known 𝑥,𝑦, and our task is

to know whether the proportion of mispredictions in this (𝑝, 𝜖)-
neighbourhood is less than or equal to a real value 𝜅 where 0 < 𝜅 <

1/2. Formally, we need to check if the following condition holds.

𝑃

(
ℎ(x′) ≠ 𝑦

��� ∥x − 𝑥 ∥𝑝 ≤ 𝜖

)
≤ 𝜅 (19)

Observe that the inequality above is exactly 𝑐PR (𝑥,𝑦; 𝑝, 𝜖, ℎ, 𝜅),
the event formula for probabilistic robustness [31]. There are a few

potential solutions to this task, where the shared strategy is to treat

ℎ(x′) ≠ 𝑦 as a random variable with a Bernoulli distribution.

From there, Robey et al. [31] use the maximum likelihood esti-

mator from a random sample, which in the Bernoulli case is the

sample mean (with sample size 100). This method is fast, but prone

to overfitting and high variance, especially with small samples or

when the true probability is near 0 or 1. When estimates approach

𝜅 , distinguishing their relation to 𝜅 becomes statistically unreliable,

necessitating more precise estimation to ensure significance.

Hypothesis testing. We can use hypothesis testing to better esti-

mate 𝑐𝑃𝑅 . To formulate a hypothesis testing problem, we first let

𝑝⊺ denote the true parameter p in our Bernoulli distribution. As

such, we can state the null hypothesis

𝐻0 : 𝑝⊺ > 𝜅 (20)

and the alternative hypothesis

𝐻1 : 𝑝⊺ ≤ 𝜅. (21)

Then, we statistically determine whether there is enough evidence

to reject the null hypothesis in favour of the alternative hypothesis.

For example, suppose we want to test the following one-sided

hypothesis: 𝐻0 : 𝑝⊺ > 0.01, and 𝐻1 : 𝑝⊺ ≤ 0.01. Assume that we

take a sample of 30 binary outcomes and observe 2 successes (i.e.,
two misprediction cases out of 30). Then, we can determine if this

2 out of 30 is significant.

While hypothesis testing helps preserve statistical significance,

not all tests are well-suited for this problem. For example, the

Agresti-Coull confidence interval used by Zhang et al. [46] ap-

proximates a binomial test, and may not perform well when the

sample size is very small or the true proportion 𝑝 is close to zero

or one, leading to incorrect inferences [1].

Exact Binomial Test. We compute the p-value as the cumulative

probability as follows, under the binomial distribution with 𝑝⊺ = 𝜅 .

p-value = 𝑃 (k > 𝑘 | k ∼ Bin(𝑛, 𝜅) =
𝑘∑︁
𝑖=0

(
𝑛

𝑖

)
𝜅𝑖 (1 − 𝜅)𝑛−𝑖 (22)

Here, 𝑛 represents the sample size, and 𝑘 denotes the number of

successes. Then, if the obtained p-value exceeds a significance level

𝛼 , e.g., 0.05, we fail to reject 𝐻0. If the obtained p-value is less than

or equal to the significance level 𝛼 , we can reject 𝐻0 and adopt 𝐻1.

Compare with Agresti–Coull Approximation. The difference be-
tween a binomial test (with exact solution) and its Agresti–Coull

approximation lies in the way of calculating the cumulative density

function of a binomial distribution. Particularly, the Agresti–Coull

approximation estimates 𝑝⊺ using

𝑝 =
𝑘 + 𝑧2

𝛼/2

𝑛 + 𝑧2

𝛼

(23)

where 𝑘 denotes the number of successes, and 𝑧𝛼 = Φ
-1
(

1 − 𝛼
2

)
is

the quantile of a standard normal distribution, e.g., for 𝛼 = 0.05 at

one side, 𝑧.05 = 1.645. A lower bound of the confidence interval is

then calculated as

𝑝 − 𝑧𝛼

√︄
𝑝 (1 − 𝑝)
𝑛 + 𝑧2

𝛼

. (24)

If and only if this lower bound is greater than 𝜅 , then we can reject

𝐻0 and adopt 𝐻1.

In the example above, where 𝑛 = 30, 𝑘 = 2, the exact binomial

test gives a p-value of 0.9967, which fails to reject. In contrast, the

Agresti–Coull confidence interval has a lower bound 0.0153, which

exceeds 0.01 and thus leads to rejection of 𝐻0. This discrepancy

illustrates that the Agresti–Coull approximation can overstate evi-

dence against the null in small samples and when the 𝑝⊺ is near 0

or 1, while the exact binomial test remains conservative.

Both left- and right-tailed tests. So far, we have been working

on a left-tailed hypothesis test, i.e., the null hypothesis is 𝑝⊺ being

greater than some value. Intuitively, a left-tailed test that rejects the

null hypothesis suggests the probability of event a2 conditioned on
event ¬a1 is less than 𝛼 , where

• Event a1: 𝑐PR (𝑥,𝑦;𝑝, 𝜖, ℎ, 𝜅) is indeed true,

• Event a2: Our evidence says that 𝑐PR (𝑥,𝑦; 𝑝, 𝜖, ℎ, 𝜅) would
be true.

Intuitively, the significance level 𝛼 also represents the failure rate

of our conclusion.

Similar to a left-tailed test, we can meanwhile plan a right-tailed

test. When a right-tailed test rejects the null hypothesis, it suggests,

the probability of event ¬a2 conditioned on event a1 is less than 𝛼 .

For every input-label pair (𝑥,𝑦), the hypothesis test will reject
either side of the tail if there are sufficient samples (if not sufficient,

we assume the worst case, i.e., reject the opposite side). The estima-

tion of sample number is well-studied [28, 36], e.g., we could use

the following formula

𝑛 =

(
𝑧1−𝛼 ·

√︁
𝜅 (1 − 𝜅) + 𝑧𝛼 ·

√︁
𝑝⊺ (1 − 𝑝⊺)

𝜅 − 𝑝⊺

)
2

(25)
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Where 𝑝⊺ is an empirically estimated Bernoulli parameter p. There-

fore, we would obtain

𝑃 (¬a2 |a1) < 𝛼, (26)

and similarly:

𝑃 (a2 |¬a1) < 𝛼. (27)

4.2 True Probability Rather Than Observed
Events

Next, we use the law of total probability, a special case of tower

law, to eliminate the help values 𝜅 and 𝛼 . We first eliminate 𝛼 .

4.2.1 Eliminating 𝛼 . Here, our goal is to determine the probability

of 𝑐PR (x, y;𝑝, 𝜖, ℎ, 𝜅) over the distribution. In other words, we want

to obtain 𝑃 (a1). Besides, what we already have is Inequality (26)

and (27).

Lemma 4.1. We are given a joint distribution of x, y, where x has
support X and y has support Y. For any model ℎ : X → Y, its (𝑝, 𝜖)-
probabilistic robustness has the following lower and upper bounds.

𝑃 (𝑐PR (x, y;𝑝, 𝜖, ℎ, 𝜅)) > 𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼)) − 𝛼

1 + 𝛼

𝑃 (𝑐PR (x, y;𝑝, 𝜖, ℎ, 𝜅)) < 𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼))
1 − 𝛼

(28)

Proof. From the law of total probability, it is obtained that

𝑃 (a2) = 𝑃 (a2 | a1)𝑃 (a1) + 𝑃 (a2 | ¬a1)𝑃 (¬a1) . (29)

If we further write 𝑃 (¬a1) = 1 − 𝑃 (a1), and 𝑃 (a2 |¬a1) = 1 −
𝑃 (¬a2 |¬a1), we eventually get

𝑃 (a1) =
𝑃 (a2) − 𝑃 (a2 |¬a1)

1 − 𝑃 (¬a2 |a1) + 𝑃 (a2 |¬a1)
. (30)

Now that we know that 0 < 𝑃 (a2 |¬a1), 𝑃 (¬a2 |a1) < 𝛼 , we can find

the lower and upper limit of 𝑃 (a1) as
𝑃 (a2) − 𝛼

1 + 𝛼
< 𝑃 (a1) <

𝑃 (a2)
1 − 𝛼

. (31)

Recall that the event a1 is essentially that 𝑐PR (x, y;𝑝, 𝜖, ℎ, 𝜅) holds.
Also, event a2 is the observation. This completes the proof. □

Inequality (28) makes sense because the probabilistic robust-

ness (although itself is not measurable) is still predominantly posi-

tively related to the observed probabilistic robust accuracy, and a

smaller false positive rate (𝛼) also makes these two quantities closer.

Note that the usually measurable probabilistic robust accuracy is a

maximum likelihood estimator of 𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼)), as it is
computing the sample mean given discrete {(𝑥1, 𝑦1), . . .}.

4.2.2 Eliminating 𝜅. Although 𝛼 has been eliminated, as noted in

prior work [25], 𝜅 remains. These extra parameters add confusion

and labour to robustness evaluation, e.g., fair comparison is difficult

if different 𝜅 values are used. Next, we present how to eliminate 𝜅.

In this task, we are given 𝑃 (𝑐PR (x, y;𝑝, 𝜖, ℎ, 𝜅)) or its lower and
upper bounds. We can equivalently expand this expression back to

the following form using expression (19).

𝑃

(
𝑃

(
ℎ(x′) ≠ 𝑦

��� ∥x − 𝑥 ∥𝑝 ≤ 𝜖

)
≤ 𝜅

)
(32)

In the following, we link this form back to tower robustness, through

both Markov’s Inequality and tower law.

Theorem 4.2. We are given a joint distribution of x, y, where x
has support X and y has support Y. For any model ℎ : X → Y, its
(𝑝, 𝜖)-tower robustness has a computable upper bound as

𝜅𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼))
1 − 𝛼

− 𝜅 + 1. (33)

Proof. According to Markov’s Inequality, for a non-negative

function 𝑓 (𝑏) ≥ 0 and a random variable b,

𝑃 (𝑓 (b) ≥ 𝜅) ≤ E[𝑓 (b)]
𝜅

. (34)

This gives us

𝑃 (𝑓 (b) < 𝜅) ≥ 1 − E[𝑓 (b)]
𝜅

. (35)

Observe that 𝑃 (ℎ(x′) ≠ 𝑦 | ∥x − 𝑥 ∥𝑝 ≤ 𝜖) is a non-negative func-
tion of x. Thus, substituting it in we get the following form.

𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

)
≥ 1 −

E[𝑃∥x−𝑥 ∥𝑝≤𝜖 (ℎ(x
′) ≠ 𝑦)]

𝜅
(36)

Shifting the sides, we get

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

) ]
≥ 𝜅

(
1 − 𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

)) (37)

Multiplying -1 and then adding 1 to both sides, we get

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) = 𝑦

) ]
≤ 1 − 𝜅

(
1 − 𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

))
≤ 1 − 𝜅 + 𝜅𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

) (38)

We have got the lower and upper limits of the third term on the

right-hand side of this inequality. Substituting that in, we get

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) = 𝑦

) ]
<

𝜅𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼))
1 − 𝛼

− 𝜅 + 1.

(39)

This provides an upper bound on tower robustness of the given

model over the given distribution. □

Theorem 4.3. We are given a joint distribution of x, y, where x
has support X and y has support Y. For any model ℎ : X → Y, its
(𝑝, 𝜖)-tower robustness has a computable lower bound as

(1 − 𝜅) 𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼)) − 𝛼

1 + 𝛼
. (40)

Proof. We start from the tower law, and we can get the follow-

ing inequality

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

) ]
≤

𝜅𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

)
+

𝜅∗𝑃
(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
> 𝜅

) (41)

where𝜅∗ is a known upper bound that𝜅∗ ≥ 𝑃∥x−𝑥 ∥𝑝≤𝜖 (ℎ(x
′) ≠ 𝑦)

on the function’s output. A naive 𝜅∗ value is 1, which leads to

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

) ]
≤

(𝜅 − 1)𝑃
(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

)
+ 1

(42)
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Multiplying -1 and then adding 1 to both sides, we get

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) = 𝑦

) ]
≥ (1 − 𝜅)𝑃

(
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) ≠ 𝑦

)
≤ 𝜅

) (43)

Substituting in a lower bound of the right-hand side, we get

E

[
𝑃∥x−𝑥 ∥𝑝≤𝜖

(
ℎ(x′) = 𝑦

) ]
> (1 − 𝜅) 𝑃 (𝑐PRA (x, y;𝑝, 𝜖, ℎ, 𝜅, 𝛼)) − 𝛼

1 + 𝛼
.

(44)

This completes the proof. □

Till here, we have successfully eliminated the helper parameters

𝜅 and 𝛼 . Theorems 4.2 and 4.3 provide the expression of the pro-

posed TEB-U and TEB-L metric, respectively. In practice, we can

freely choose convenient values of them and compare the model

robustness of, say, ℎ1 with another model ℎ2 that is evaluated with

different helper parameters. Essentially, we are comparing the lower

bound, or the robustness guarantee of each model. And, when one

intends to claim a better model robustness, it is reasonable to push

the lower bound tighter by using smaller 𝛼 and 𝜅. This is reason-

able, compared to the existing practice that choosing higher 𝜅 and

𝛼 inflates the robustness score [45, 46].

Another advantage of using tower robustness, or its lower bound

guarantee (TEB-L), to evaluate robustness is that in this unified

framework, we can compare the deterministic robustness and prob-

abilistic robustness, i.e., we find a fair comparison method. Fur-

thermore, the proposed lower bound can be used together with

deterministic robustness verification, i.e., for those cases that cannot
be deterministically verified, we can compute their probabilistic ro-

bust accuracy and combine them. Such a combination is not merely

a score addition, but is derivable from the governing expression of

tower robustness.

A limitation of TEB-L/TEB-U is its tightness and computational

cost arising from the fixed sampling scheme. Although the esti-

mated sample size in Equation (25) is reasonable, it may still be too

small (preventing rejection of the null hypothesis) or excessively

large (reducing efficiency). A potential remedy is the sequential

probability ratio test [36], which will be investigated in future work.

Another limitation of TEB-L/TEB-U lies in their distributional

dependence. As with all metrics inherently based on MLE from

samples, evaluating TEB-L/TEB-U under distributional drift is nec-

essary, even for unseen examples. This direction may be further

explored in conjunction with studies on distribution shift [16].

5 EMPIRICAL RESULTS
Setup. We compute TEB-L and TEB-U for existing neural net-

works. There are altogether six neuralmodels, trained fromERM [34],

PGD adversarial training [24], TRADES [42], MART [37], CVaR [31],

and small-box certified training [27].

We evaluate these models on the commonly used MNIST [19]

and CIFAR-10 tasks. Typically, MNIST classification is tested within

(∞, 1/10)-neighbourhood andCIFAR-10 (∞, 8/255)-neighbourhood,
which is also our default setting. For each dataset, we evaluate on

the 10,000 images in the testing set.

Result. We present our experimental results in Figure 1. Since

the validity of tower robustness is formally shown in previous dis-

cussions, our experiments are primarily used to help understand

and provide visual ideas. From Figure 1, we may first observe that

CVaR so far obtains the highest lower bound of tower robustness

on CIFAR-10, over 90.6%. The second highest is from PGD adver-

sarial training, but only slightly above 80%. On MNIST, except for

ERM, which does not optimise robustness and Small-box, which

has concentrated primarily on deterministic robustness, all other

models achieve a pretty high guarantee. These results aligned with

our intuition and others’ results [23]. Again, in a strict sense, this

alignment would not lead us to any implication, but simply we are

more or less not off track.

What brings us more benefits is to observe the trend when the

helper parameters are decreasing. As mentioned in previous discus-

sions, if a model provider would like to get a better certificate of the

model’s robustness, a fair approach is to squeeze these helper param-

eters. This lifts the lower bound, as observed in Figure 1, but does

not invalidate it. Intuitively, this could be considered as different

verification methods in the deterministic robustness context, where

each model does not necessarily obtain a certificate in the same

approach. In our experiment, we use a default 𝜅 = 1/10, 𝛼 = 1/10.

When reducing either𝜅 or 𝛼 , the lower bound can grow, which over-

comes the inflation problem prevalent in probabilistic robustness

evaluations. Note that reducing𝜅 turns out to be more effective than

reducing 𝛼 . Intuitively, 𝜅 is more closely related to the proportion

of adversarial examples than 𝛼 is.

Intriguingly, we can apply the probabilistic robustness verifica-

tion techniques to the test cases not deterministically verified. For

example, Small-Box is a (deterministic) certified training method,

which is usually evaluated only for deterministic robustness. While

one could indeed subject this model to probabilistic robustness

verification, there have been no theoretical guarantees provided for

combining both. Our method is the first that put these two verifi-

cation results together and provide an interpretable quantity. Yet,

because the Small-Box model has primarily been tuned towards de-

terministic verification, its tower robustness lower bound remains

one of the lowest on the list, even if we simultaneously enable

probabilistic robustness verification.

As for the upper bound of tower robustness, it generally would

not be used as a guarantee. But it can be used to confirm the defects

of a given model. Its monotonicity is not obvious in expression (33),

but we have observed it likely decreases when either 𝜅 or 𝛼 grows.

6 RELATEDWORK
Empirical-based Approaches. A common and intuitive method

for assessing model robustness is the test error rate [5], valued

for its speed and versatility in evaluating both 𝐿𝑝 norm and trans-

formation perturbations (e.g., rotation, illumination). Adversarial

attacks exemplify this approach, identifying vulnerable samples

within defined vicinities [5, 18]. However, this method lacks guar-

antees, as previously validated robustness may be undermined by

stronger attacks, necessitating re-evaluation across models. To miti-

gate this, [13] proposes using a standardized adversarial test set, en-

abling efficient and consistent evaluation across models. Although

this technique doesn’t strictly align with any formal robustness
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Figure 1: Tower robustness guarantees. Each solid line shows the lower bound, and the dashed line shows the upper bound.

definition and risks overfitting, it offers a practical, rapid method

for accurately ranking models.

Reachability-based algorithms. take an input and a predefined

perturbation to assess whether a given model meets specific safety

criteria, such as robustness and boundary adherence. This evalu-

ation of robustness can be achieved by addressing output range

analysis problems through computational methods including inter-

val analysis, linear programming, and optimization [21, 22, 35, 40].

Layerwise analysis is a prevalent approach in this context. The

K-ReLU technique [33], which utilizes joint relaxation, effectively

captures dependencies between inputs to different ReLUs within a

layer, thus overcoming the convex barrier imposed by single neu-

ron triangle relaxation and its approximations. Another notable

method, CLEVER [39], transforms the robustness analysis into a lo-

cal Lipschitz constant estimation problem and employs the Extreme

Value Theory for efficient evaluation. However, it is important to

note that reachability analysis techniques often require Lipschitz

continuity over outputs for the target networks, which may limit

their applicability in some instances.

Constraint-based Verification. aims to ensure that a given model

adheres to a predefined set of robustness constraints. This pro-

cess entails defining the constraints and then analyzing the model

using techniques such as model checking, testing, or runtime mon-

itoring [3, 14]. Marabou, for instance, translates queries into con-

straint satisfaction problems using Satisfiability Modulo Theories

(SMT)[4]. It is compatible with various network activation func-

tions and topologies, and it carries out high-level reasoning on the

network [15]. Another SMT-based approach, Reluplex, employs the

simplex method while extending it to accommodate the Rectified

Linear Unit (ReLU) activation function [14]. Although constraint-

based verification can offer formal guarantees that a model fulfils

certain constraints or requirements, challenges such as computa-

tional complexity and pessimistic results have hindered its wide-

spread application [46]. Consequently, researchers have proposed

probabilistic robustness to address these limitations.

Probabilistic-Based Approach. Diverging from the deterministic

verification methods previously examined, probabilistic approaches

consider the balance between performance and sample complexity

in both worst-case and average-case learning situations [7, 20, 31].

Cohen et al. [7] employ randomized smoothing as a reachability

method, calculating a lower bound on robustness by adding noise to

input data and observing output behaviour. This lower bound can

then be determined by the proportion of perturbed inputs yielding

robust outputs. Additionally, Salman et al. [32] develops an adapted

attack for smoothed classifiers and utilises adversarial training to

enhance the provable robustness of these classifiers. However, these

statistical methods primarily concentrate on pixel-level additive

perturbations and often require assumptions about target neural

networks or input distributions, limiting their broad applicability

as they mostly function with 𝐿2
norms. Moreover, Zhang et al. [46]

introduces PRoA, which relies on adaptive concentration. Although

they employ an approximation method for distribution, it may lead

to soundness issues in the future. In contrast, the proposed exact

binomial test method retains the benefits of probabilistic approaches

while using an exact solution to circumvent soundness problems.

Similar to PRoA, our method can address black-box deep learning

models without assumptions and is not restricted by transformation

attacks (unbounded by 𝐿𝑝 norms).

7 CONCLUSION
In this study, we introduce tower robustness, an innovative concept

that makes the observation process of perturbation robustness

intuitive. Throughout this work, we adopt a global perspective to

unify the deterministic and probabilistic robustness, i.e., we focus
on the behaviour of an upcoming unseen sample.

We provide computable lower and upper bounds (TEB-L and

TEB-U) of tower robustness. These metrics solve the overestimation

problem of existing probabilistic robustness metrics by eliminating

the excessive degree of freedom. Furthermore, we can combine

the proposed bounds with deterministic robustness, and this still

provides theoretical guarantees. Besides, TEB-L and TEB-U could

be used for other machine learning models as well, not specifically

limited to neural networks.

As a follow-up on this work, we plan to conduct a detailed

analysis of the computational cost of TEB-L/TEB-U, investigate

the tightness of the bounds theoretically, and further broaden our

experimental evaluation in scope and depth. In future work, we

will also explore incorporating differential privacy as a safeguard

against adversarial attacks [26].
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