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ABSTRACT
Sequential recommendation systems play an important role in de-

livering personalised user experiences, yet they rely heavily on

detailed user history, raising serious privacy concerns. In this work,

we introduce a novel framework that integrates a randomised re-

sponse mechanism into sequential recommendation to provide

strong privacy guarantees while preserving recommendation effec-

tiveness. By obfuscating user history through controlled probabilis-

tic item substitution based on semantic similarity, our approach

ensures that released sequences protect individual behaviour with

provable Bayesian posterior privacy. We further propose training

strategies tailored for privacy-filtered data, including a frequency-

based vocabulary expansion method inspired by subword tokeni-

sation. Experiments on four real-world datasets demonstrate that

our approach preserves recommendation quality under strong pri-

vacy constraints and outperforms existing baselines even without

applying privacy filters.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • Infor-
mation systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems play a critical role in providing personalised

content [2], where the goal is to suggest relevant items to users from

vast item collections [21]. The current focus is on building effec-

tive recommender systems that accurately model user preferences

based on their historical interaction data [30]. With the progress of
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deep learning [15], deep sequential recommendation (SR) models

have become a leading approach [14, 35] and have shown strong

performance across various recommendation baselines [32].

Despite the remarkable progress in SR, most existing methods

rely heavily on historical user interaction data. This dependence

raises serious concerns about user privacy [39], as collecting and

storing such detailed behavioural data can expose sensitive per-

sonal information. While recent research has largely focused on

improving recommendation effectiveness [12, 13, 17, 20, 28, 33],

privacy is also an important concern. As a result, there is a growing

need for recommendation approaches that can balance effectiveness

with strong privacy protections.

Existing work has explored ways to reduce the reliance of SR

systems on user data [3, 8, 23, 27, 31]. For example, federated train-

ing can be used to limit exposure to sensitive information [19, 24].

However, such approaches still require detailed user histories at

inference time, which introduces privacy risks, particularly when

transmitted data are sent to remote servers [36]. Differential pri-

vacy [6] has also been explored by Hu and Fang [16] to inject

noise into graph neural networks, but this leads to degraded perfor-

mance [36, 41]. Other efforts [36] focus on obfuscating input data

but lack formal privacy guarantees. As a result, there remains a

critical gap: how to ensure provable privacy for user history while

enabling SR to work effectively on privacy-preserving inputs

In this work, we propose a privacy-preserving framework for se-

quential recommendation that applies a randomised response [37]

mechanism to user history before it is sent to the recommender

system. Instead of sharing exact interaction sequences, each item

is probabilistically replaced with a semantically similar [25] alter-

native, providing formal Bayesian privacy guarantees. This obfus-

cation is applied at the data level and operates independently of

the model architecture. To better fit the resulting privacy-filtered

sequences, we introduce a training strategy based on frequency-

driven vocabulary expansion inspired by subword tokenisation,

enabling the model to capture meaningful sequential patterns from

perturbed inputs. Experiments on several real-world datasets demon-

strate that our approach retains strong performance even under

tight privacy constraints and outperforms existing baselines in

standard (non-private) settings.

2 PRELIMINARIES IN THE SEQUENTIAL
RECOMMENDATION PROBLEM

2.1 Sequences and Next-Item Recommendation
Essentially, sequential recommendation recommends a sequence

and/or takes sequential data as input to make recommendations.

For instance, a university library system notices a student reads
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“Pride and Prejudice” followed by “Jane Eyre”. Using sequential

recommendation, it suggests “Wuthering Heights” and then “Mid-

dlemarch”, continuing the student’s journey through reading classic

British literature.

Formally, we let random variable u denote a user, e.g.,, the student
who uses the library system. Also, we denote the item set, e.g.,, all
books, using a (possibly infinite) discrete set V where each item,

e.g.,, “Middlemarch”, is an element of V. Then, we can define a

sequence as follows.

Definition 2.1 (Sequence). Let V denote the set of items. A se-

quence is a discrete stochastic process (v𝑡 )𝑡 ∈Z, where each v𝑡 is a
random variable taking values in V. If a clear start of the sequence
exists, we denote this process as (v𝑡 )𝑡 ∈N.

Item recommendation. The recommendation process can be mod-

elled as a function 𝑓𝑘 : U × V𝑘 → V, if 𝑘 items in a sequence are

given as input. Themost straightforward case is when 𝑣0, 𝑣1, . . . , 𝑣𝑘−1
are given, whereas the goal is to recommend a good 𝑣𝑘 to user 𝑢.

There are also other scenarios like directly recommending 𝑣𝑘+1
based on 𝑣0, 𝑣1, . . . , 𝑣𝑘−1, i.e., 𝑣𝑘 is skipped. Recommending a se-

quence of𝑚 items, e.g.,, 𝑣𝑘 , 𝑣𝑘+1, . . . , 𝑣𝑘+𝑚−1, can be achieved through
𝑚 times of item recommendation, i.e., let 𝑓𝑘,+1 denote the straight-
forward next-item recommendation function, then we obtain

𝑣𝑘 = 𝑓𝑘,+1 (𝑢, 𝑣0, 𝑣1, . . . , 𝑣𝑘−1)
𝑣𝑘+1 = 𝑓𝑘+1,+1 (𝑢, 𝑣0, 𝑣1, . . . , 𝑣𝑘 )

. . .

𝑣𝑘+𝑚−1 = 𝑓𝑘+𝑚−1,+1 (𝑢, 𝑣0, 𝑣1, . . . , 𝑣𝑘+𝑚−2) .

(1)

Intuitively, a fundamental research objective in sequential recom-

mendation is improving the recommender 𝑓𝑘 to better fit user pref-

erences, possibly via various objective functions [5, 13, 14, 22, 38].

2.2 Machine Learning in Sequential
Recommendation

The recommender function 𝑓𝑘 : U × V𝑘 → V can often be learned.

That is, we optimise 𝑓𝑘 to let it fit the joint distribution of 𝑘 known

items and the targeted one. For instance, consider a simplest form

of Markov chain, which assumes that the next item depends only

on 𝑘 preceding items. Formally, for a user u and a sequence history

(v𝑡 )𝑡 ∈ (N∩[0,𝑘 ′ ) ),𝑘 ′>𝑘 , the Markov assumption is

∀𝑡 > 𝑘. 𝑃 (v𝑡 = 𝑣 | u = 𝑢, v0 = 𝑣0, . . . , v𝑡−1 = 𝑣𝑡−1)
= 𝑃 (v𝑡 = 𝑣 | u = 𝑢, v𝑡−𝑘 = 𝑣𝑡−𝑘 , . . . , v𝑡−1 = 𝑣𝑡−1) .

(2)

The Markov property enables efficient user behaviour modelling

without requiring the full sequence history [10, 11, 29]. The corre-

sponding recommender function may then take the form

𝑓 Markov

𝑘,+1 (𝑢, 𝑣𝑡−𝑘 , . . . , 𝑣𝑡−1) :=

argmax

𝑣∈V
𝑃 (v𝑡 = 𝑣 | u = 𝑢, v𝑡−𝑘 = 𝑣𝑡−𝑘 , . . . , v𝑡−1 = 𝑣𝑡−1),

(3)

where 𝑃 (v𝑡 = 𝑣 | u = 𝑢, v𝑡−𝑘 = 𝑣𝑡−𝑘 , . . . , v𝑡−1 = 𝑣𝑡−1) is the esti-
mated probability of item v𝑡 and can be expressed by a parametrised

function 𝑔 : Θ × U × V𝑘+1 → R. Here, Θ denotes the set of all pos-

sible parameters, e.g.,, a set of neural network models. Intuitively,

the recommender 𝑓 Markov

𝑘,+1 can be optimised by minimising the

Kullback–Leibler divergence (KL divergence) between the given

empirical distribution and the estimated distribution, i.e.,

min

𝜃 ∈Θ
−
∑︁
𝑢

∑︁
𝑡≥𝑘

log𝑔
(
𝜃,𝑢, 𝑣𝑡−𝑘,𝑢 , . . . , 𝑣𝑡−1,𝑢 , 𝑣𝑡,𝑢

)
. (4)

Bidirectional condition. Sometimes, recommendations are condi-

tioned not only on past items but also on future ones. For example,

if a student has read “Pride and Prejudice” and “Jane Eyre”, and we

know they are later expected to read “Middlemarch”, but the book

in between is unknown. The system may recommend “Wuthering

Heights” in this case.

Here, the recommender 𝑓𝑘 can be learned more flexibly than in

the purely unidirectional setting [32]. For any sequence containing

𝑘 +𝑚 items, the recommender training can be supervised by any

𝑚 items in it, rather than just the last 𝑚 items. Moreover, each

of the𝑚 supervising items can condition on any other 𝑘 items in

the sequence, rather than 𝑘 consecutive items. The corresponding

recommender function may then take the following form

𝑓 Bi
𝑘
(𝑢, 𝑣𝑖1 , . . . , 𝑣𝑖𝑘 , 𝑖1, . . . , 𝑖𝑘 , 𝑖target) :=
argmax

𝑣∈V
𝑃 (v𝑖target = 𝑣 | u = 𝑢, v𝑖1 = 𝑣𝑖1 , . . . , v𝑖𝑘 = 𝑣𝑖𝑘 ).

(5)

Similar to the unidirectional case, we could optimise 𝑓 Bi
𝑘

by min-

imising the KL divergence between the empirical distribution and

the estimated distribution.

3 RANDOMISED-RESPONSE SEQUENTIAL
RECOMMENDATION

In this section, we introduce the randomised-response sequential

recommendation to protect user history privacy while maintaining

recommendation effectiveness. We first present the randomised

response mechanism that guarantees privacy during sequential

recommendation. Then we describe how the recommender can be

trained to accommodate this privacy-preserving setting.

3.1 Protecting Data Release with Randomised
Response

In sequential recommendation, user history is provided to the sys-

tem to generate the next item. When the system is hosted remotely,

this historymust be uploaded, even if only a portion (e.g.,, inMarkov

settings) is used. Since the exact user history often contains confi-

dential information, transmitting it poses privacy risks.

Therefore, we aim to investigate whether we can filter out private

information in user history, with formal guarantees of privacy

protection. Further, if such a guarantee is obtainable, what does the

guarantee suggest?

To address this, we propose a randomised response mechanism

integrated into the sequential recommendation process, as described

in Algorithm 1. Intuitively, Algorithm 1 first assigns an alternative

item to each original item (Lines 1 - 10), independently of any user

or historical data. Then, each item in the user history is randomly

replaced with either its original or alternative value (Lines 11 - 18).

The resulting history, disentangled from private information, is

then used for recommendation (Line 19).
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Algorithm 1 Randomised-Response Sequential Recommendation

Require: 𝑓𝑛,+1 (Recommender function), 𝑢 (user), 𝑣1, 𝑣2, . . . , 𝑣𝑛−1
(history sequence), V (item set), ℎ : V → R𝑑 (embedding

function), 𝜖 (privacy parameter)

Ensure: Next item in sequence 𝑣𝑛
1: Define mapping of alternatives A ← { }
2: for 𝑣 ′ ∈ V do
3: 𝑑min ←∞
4: for 𝑣 ′′ ∈ V \ { 𝑣 ′ } do
5: 𝑑 ← ∥ℎ(𝑣 ′) − ℎ(𝑣 ′′)∥

2

6: if 𝑑 < 𝑑min then
7: A[𝑣 ′] ← 𝑣 ′′, also 𝑑min ← 𝑑

8: end if
9: end for
10: end for
11: for 𝑡 = 0, 1, . . . , 𝑛 − 1 do
12: Sample 𝑞 ∼ Uniform(0, 1)
13: if 𝑞 > 𝑛

√︁
𝜖/(𝜖 + 1) then

14: 𝑣
p

𝑡 ← A[𝑣𝑡 ]
15: else
16: 𝑣

p

𝑡 ← 𝑣𝑡
17: end if
18: end for
19: 𝑣𝑛 ← 𝑓𝑛,+1

(
𝑢, 𝑣

p

0
, 𝑣

p

1
, . . . , 𝑣

p

𝑛−1

)
Choose alternative items. We embed items into dense vectors

to capture their semantic and contextual meaning. Then, we se-

lect the nearest Euclidean neighbour as the alternative. For exam-

ple, LLaMA-2 [34] embeddings provide both semantic depth and

grounded real-world detail. Intuitively, the alternative item is ex-

pected to be closely related to the original one to keep the history

sequence reasonable.

Compute the privacy guarantee. The privacy is protected when

we transform the original history 𝑣0, 𝑣1, . . . , 𝑣𝑛−1 to the randomised-

response sequence 𝑣
p

0
, 𝑣

p

1
, . . . , 𝑣

p

𝑛−1. For example, if 𝑛 = 4 and the

original history is [“Pride and Prejudice”, “Wuthering Heights”,

“Jane Eyre”, “Great Expectations”], we apply a randomised process

to each item, e.g.,, with probability 0.54, an item is kept unchanged,

and with probability 0.46, it is replaced by a fixed alternative (e.g.,,
“Pride and Prejudice” might be replaced with “Persuasion”, and

“Jane Eyre” with “Jane (April Lindner)”). As a result, the released

history might be [“Persuasion”, “Wuthering Heights”, “Jane (April

Lindner)”, “Great Expectations”]. In this case, an attacker cannot

guess the original sequence with more than a 1 in 10 odds, making

the exact reconstruction of reading history highly unlikely. In a

general case, a formal Bayesian guarantee is as follows.

Theorem 3.1 (Posterior Privacy). Let 𝑣0, 𝑣1, . . . , 𝑣𝑛−1 ∈ V𝑛 be
a sequence history of 𝑛 items. Suppose each value is obfuscated by the
randomised response mechanism

R(𝑣) =
{
𝑎(𝑣) with probability 1 −

(
𝜖
1+𝜖

)
1/𝑛

𝑣 with probability
(

𝜖
1+𝜖

)
1/𝑛

,
(6)

where 𝑎 : V → V is a deterministic injective mapping such that
𝑎(𝑣 ′) ≠ 𝑣 ′ for all 𝑣 ′ ∈ V. Then for any privacy intruding guess

(v̂𝑡 )𝑛−1𝑡=0
from sequence R(𝑣0), . . . ,R(𝑣𝑛−1), the posterior odds of cor-

rectly recovering the original sequence are bounded by 𝜖 , i.e.,

𝑃

(
(v̂𝑡 )𝑛−1𝑡=0

= 𝑣0, . . . , 𝑣𝑛 | R(𝑣0), . . . ,R(𝑣𝑛−1)
)

𝑃

(
(v̂𝑡 )𝑛−1𝑡=0

≠ 𝑣0, . . . , 𝑣𝑛 | R(𝑣0), . . . ,R(𝑣𝑛−1)
) ≤ 𝜖. (7)

Proof. Let 𝑝 < 1/2 denote the probability parameter of the

randomised response Bernoulli trial [40], i.e., the probability of

replacing an item with its alternative. Then, the probability of

correctly guessing the full sequence is (1−𝑝)𝑛 , and the probability of
any other sequence is 1− (1−𝑝)𝑛 . Thus, for any 1−𝑝 ≤ 𝑛

√︁
𝜖/(1 + 𝜖),

the posterior odds of the correct sequence given the obfuscated are

bounded by (1 − 𝑝)𝑛/(1 − (1 − 𝑝)𝑛), thus upper bounded by 𝜖 . □

Intuitively, even with knowledge of the mechanism and prior, the

probability of recovering the private history is upper-bounded. In

practice, given any specified privacy parameter 𝜖 and the alternative

of each item, we can generate a privacy-filtered sequence for the

original history (Lines 11 - 18 in Algorithm 1).

Note that Theorem 3.1 holds regardless of which alternative is

chosen for each item. The alternative item choice is a matter of

the sequence content. If the alternative is semantically related, the

sequence changes less. If the replacement is arbitrary, the result may

differ greatly, potentially affecting downstream recommendations.

3.2 Training Sequential Recommender for
Privacy-filtered Data

Privacy-filtered sequences pose unique challenges for recommender

training. Injected randomness disrupts local item continuity, while

replacements can introduce semantic drift. To improve generaliz-

ability and reduce sparsity, we introduce a frequency-based com-

position strategy inspired by subword tokenisation methods such

as byte pair encoding [7]. Still, adaptation to fit our framework is

necessary. Specifically, given the item set V, we iteratively merge

frequent adjacent item pairs (𝑣𝑡 , 𝑣𝑡+1) ∈ V2
into composite units:

V′ ← V ∪ {𝑣𝑡_𝑣𝑡+1} (8)

Intuitively, the item set keeps growing till its size meets a pre-set

number, e.g.,, 20,000 for Steam.

Combined with bidirectional modelling as in Equation (5), this

item composition approach helps the model recover meaningful

structure from both directions, even when items are actually re-

placed with alternative items (i.e., 𝑣p𝑡 ≠ 𝑣𝑡 with some probability 𝑝).

Note that we do not apply randomised response to labels in order

to preserve a reliable training signal for the model, ensuring that

supervision remains grounded in true user behaviour.

Compared to existing bidirectionalmethods such as BERT4Rec [4,

32], our adaptive vocabulary expansion reduces sparsity and cap-

tures semantically meaningful segments, enabling the model to

operate over higher-level patterns that are more resilient to noise.

For example, even if one token in a frequent phrase is replaced, the

composed segment may remain familiar and reasonable.

4 EXPERIMENT
While we can pre-know how much privacy has been protected by

setting the parameter 𝜖 , we need empirical experiments to answer
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Figure 1: Performance comparison of next-item prediction
with varying privacy constraint. HR at 1 is in solid lines, and
NDCG at 5 is in dashed lines. A shaded area illustrates the
performance gain of ourmethodwhen the privacy constraint
becomes stricter, i.e., the posterior difference (𝜖) decreases.

the following research questions. (1) How does the privacy con-

straint affect the performance of the randomised-response sequen-

tial recommender? (2) What is the role of the position of privacy-

filtered items within a sequence?

Essential settings. We run experiments [1] on four real-world

datasets: Amazon Beauty, Steam, MovieLens 1M (ML-1m), and

MovieLens 20M (ML-20m) [9], which vary significantly in domain,

size, and sparsity. For evaluation, we adopt the widely used leave-

one-out protocol [12, 20, 33], i.e., the last interaction is used for

testing, the second-to-last for validation, and the rest for training.

Each test item is ranked against 100 negative samples [17, 32]. We

report Hit Ratio (HR) at 1, and Normalised Discounted Cumulative

Gain (NDCG) at 5 [18]. To benchmark performance, we compare

against representative baselines, GRU4Rec [14] and BERT4Rec [32].

RQ1: Sequential recommendation performance with varying pri-
vacy constraints. We vary the privacy parameter 𝜖 at a series of

values (from 1/10 to 1/10,000) to evaluate the recommendation per-

formance on the privacy-filtered history. At each 𝜖 level, we report

both HR at 1 and NCDG at 5 for each method.

Figure 1 presents the results of this experiment. The proposed

training method consistently outperforms all baselines across the

four datasets, achieving at least a 2% improvement. More impor-

tantly, our method maintains stable HR and NDCG performance

even as the privacy constraint becomes more stringent, approach-

ing 𝜖 = 1/10,000. Specifically, as 𝜖 decreases from 1/10 to 1/10,000,

our method experiences an average (relative) drop of 16% in HR

and 12% in NDCG. This drop is significantly smaller than that of the

baselines, which have at least a 66% drop in both metrics. Overall,

this result shows that maintaining performance while guaranteeing

privacy is realistically achievable.

We also observe that the sequence length of user history affects

the stability of performance under varying privacy constraints. For

shorter sequences, such as those in Amazon Beauty and Steam

(with an average history length of 10 items), the performance drop

is relatively small, around 10±0.3% in both HR and NDCG. In con-

trast, for longer sequences (averaging 145 items), we observe a 24%

drop in HR and a 15% drop in NDCG. A similar trend is seen in

baseline methods. This may be because in shorter sequences, the

next item has weaker dependency on prior history, reflected in their

overall lower performance (about 40% of that for longer sequences).

As a result, replacing some items with alternatives has a limited

impact. In longer sequences, however, models may rely on stronger

𝑖/𝑛 (𝑖 + Δ𝑛)/𝑛 1

(High) 𝑝2

(Low) 𝑝1

(a) Shift private position

0 0.5 1

0

20

40

position

(b) Performance change

Figure 2: When the same privacy constraint 𝜖 is satisfied, the
position of high-privacy region, as illustrated in (a), may still
affect the performance, as shown in (b).

sequential patterns or shortcuts for next-item prediction, which are

more easily disrupted by such changes.

RQ2: Role of privacy-filtered position. In some cases, the user-

defined privacy constraint allows flexibility in setting the proba-

bility for randomised response. That is, an extremely low value of

𝑛
√︁
𝜖/(𝜖 + 1) is not always needed to meet the required privacy level.

This opens the possibility of choosing which parts of the sequence

history to obfuscate more strongly. For instance, we can define two

probabilities, 0 < 𝑝1 < 𝑝2 < 1/2, where replacing an item with

probability 𝑝2 provides stronger obfuscation than with 𝑝1. If we

apply stronger obfuscation (with 𝑝2) to Δ𝑛 items in an 𝑛-length se-

quence, 𝑝1 and 𝑝2 should satisfy (1−𝑝1)𝑛−Δ𝑛 = 𝜖 (1−𝑝2)−Δ𝑛/(1+𝜖).
This approach helps us understand how strongly obfuscated

parts of the sequence affect next-item prediction performance. In

the experiment, we set 𝑝1 = 0.1 and applied 𝑝2 to Δ𝑛 = 0.2𝑛 con-

secutive items in each sequence. Figure 2 presents the MovieLens

20M result. As the high-obfuscation region shifts from the begin-

ning to the end of the sequence, we observe a gradual increase in

performance drop. This is likely due to the nature of real-world

sequence data, which often aligns with the Markov assumption,

i.e., recent items correlate with the next item more strongly than

far-off items do. This finding also suggests that even under the same

overall privacy level, the choice of obfuscation strategy can lead to

different impacts on model performance.

5 CONCLUSION
We introduce a formal Bayesian privacy guarantee with a ran-

domised response mechanism, letting users bound the probability

that an attacker can infer their history. This strict constraint ensures

all recommendations meet a rigorous privacy standard. Further-

more, to address sparsity from randomised response, we improve

bidirectional modelling by merging frequent bi-grams into com-

posite items, improving stability as privacy tightens. Our results

confirm the feasibility of preserving user-history privacy without

compromising recommendation performance. In future, we will

extend our discussion on the Bayesian privacy guarantee compared

to differential privacy guarantees on sequential recommendation,

as well as investigate its robustness against adversarial attacks [26].

Acknowledgements. This research is supported in part by the Ministry of Education,

Singapore, under its Academic Research Fund Tier 2 (Award No. MOE-T2EP20123-

0015). Any opinions, findings and conclusions, or recommendations expressed in

this material are those of the authors and do not reflect the views of the Ministry of

Education, Singapore.



Bayesian Privacy Guarantee for User History in Sequential Recommendation Using Randomised Response CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

GENAI USAGE DISCLOSURE
Generative AI tools were used for minor language editing, such as

grammar/spelling checks and minor changes, on original author-

written text.

REFERENCES
[1] 2025. Code and data for “Bayesian Privacy Guarantee for User History in Sequen-

tial Recommendation Using Randomised Response”. https://github.com/cestwc/

sequential-recommendation-bayesian-privacy.

[2] G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of rec-

ommender systems: a survey of the state-of-the-art and possible extensions.

IEEE Transactions on Knowledge and Data Engineering 17, 6 (2005), 734–749.

https://doi.org/10.1109/TKDE.2005.99

[3] Arnaud Berlioz, Arik Friedman, Mohamed Ali Kaafar, Roksana Boreli, and Shlomo

Berkovsky. 2015. Applying Differential Privacy to Matrix Factorization. In Pro-
ceedings of the 9th ACM Conference on Recommender Systems (Vienna, Austria)
(RecSys ’15). Association for Computing Machinery, New York, NY, USA, 107–114.

https://doi.org/10.1145/2792838.2800173

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,

4171–4186. https://doi.org/10.18653/v1/N19-1423

[5] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential User-based

Recurrent Neural Network Recommendations. In Proceedings of the Eleventh ACM
Conference on Recommender Systems (Como, Italy) (RecSys ’17). Association for

Computing Machinery, New York, NY, USA, 152–160. https://doi.org/10.1145/

3109859.3109877

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

265–284.

[7] Philip Gage. 1994. A new algorithm for data compression. C Users J. 12, 2 (Feb.
1994), 23–38.

[8] Jialiang Han, Yun Ma, Qiaozhu Mei, and Xuanzhe Liu. 2021. DeepRec: On-

device Deep Learning for Privacy-Preserving Sequential Recommendation in

Mobile Commerce. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia)
(WWW ’21). Association for Computing Machinery, New York, NY, USA, 900–911.

https://doi.org/10.1145/3442381.3449942

[9] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History

and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[10] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based

Recommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems (Como, Italy) (RecSys ’17). Association for Computing Machinery, New

York, NY, USA, 161–169. https://doi.org/10.1145/3109859.3109882

[11] Ruining He and Julian McAuley. 2016. Fusing Similarity Models with Markov

Chains for Sparse Sequential Recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). 191–200. https://doi.org/10.1109/ICDM.2016.

0030

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference onWorld WideWeb (Perth, Australia) (WWW ’17). International World

Wide Web Conferences Steering Committee, Republic and Canton of Geneva,

CHE, 173–182. https://doi.org/10.1145/3038912.3052569

[13] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks

with Top-k Gains for Session-based Recommendations. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management
(Torino, Italy) (CIKM ’18). Association for Computing Machinery, New York, NY,

USA, 843–852. https://doi.org/10.1145/3269206.3271761

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based recommendations with recurrent neural networks. In Inter-
national Conference on Learning Representations (ICLR). https://arxiv.org/abs/

1511.06939

[15] Liang Hu, Longbing Cao, Shoujin Wang, Guandong Xu, Jian Cao, and Zhiping

Gu. 2017. Diversifying Personalized Recommendation with User-session Context.

In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17. 1858–1864. https://doi.org/10.24963/ijcai.2017/258

[16] Wentao Hu and Hui Fang. 2024. Towards Differential Privacy in Sequential

Recommendation: A Noisy Graph Neural Network Approach. ACM Trans. Knowl.
Discov. Data 18, 5, Article 125 (March 2024), 21 pages. https://doi.org/10.1145/

3643821

[17] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang.

2018. Improving Sequential Recommendation with Knowledge-Enhanced Mem-

ory Networks. In The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). As-
sociation for Computing Machinery, New York, NY, USA, 505–514. https:

//doi.org/10.1145/3209978.3210017

[18] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446. https://doi.

org/10.1145/582415.582418

[19] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: factored item

similarity models for top-N recommender systems. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Chicago, Illinois, USA) (KDD ’13). Association for Computing Machinery, New

York, NY, USA, 659–667. https://doi.org/10.1145/2487575.2487589

[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Rec-

ommendation. In 2018 IEEE International Conference on Data Mining (ICDM).
197–206. https://doi.org/10.1109/ICDM.2018.00035

[21] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

2016. Convolutional Matrix Factorization for Document Context-Aware Recom-

mendation. In Proceedings of the 10th ACM Conference on Recommender Systems
(Boston, Massachusetts, USA) (RecSys ’16). Association for Computing Machinery,

New York, NY, USA, 233–240. https://doi.org/10.1145/2959100.2959165

[22] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.

Neural Attentive Session-based Recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management (Singapore, Singa-
pore) (CIKM ’17). Association for Computing Machinery, New York, NY, USA,

1419–1428. https://doi.org/10.1145/3132847.3132926

[23] Ziqi Liu, Yu-Xiang Wang, and Alexander Smola. 2015. Fast Differentially Private

Matrix Factorization. In Proceedings of the 9th ACM Conference on Recommender
Systems (Vienna, Austria) (RecSys ’15). Association for Computing Machinery,

New York, NY, USA, 171–178. https://doi.org/10.1145/2792838.2800191

[24] Wu Meihan, Li Li, Chang Tao, Eric Rigall, Wang Xiaodong, and Xu Cheng-

Zhong. 2022. FedCDR: Federated Cross-Domain Recommendation for Privacy-

Preserving Rating Prediction. In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management (Atlanta, GA, USA) (CIKM
’22). Association for Computing Machinery, New York, NY, USA, 2179–2188.

https://doi.org/10.1145/3511808.3557320

[25] Wenchuan Mu and Kwan Hui Lim. 2024. Modelling Text Similarity: A Survey. In

Proceedings of the 2023 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (Kusadasi, Turkiye) (ASONAM ’23). Association
for Computing Machinery, New York, NY, USA, 698–705. https://doi.org/10.

1145/3625007.3627305

[26] Wenchuan Mu and Kwan Hui Lim. 2025. Get Global Guarantees: On the Prob-

abilistic Nature of Perturbation Robustness. In Proceedings of the 34rd ACM
International Conference on Information and Knowledge Management (Seoul, Re-
public of Korea) (CIKM ’25). Association for Computing Machinery, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3746252.3761039

[27] Jiaqian Ren, Lei Jiang, Hao Peng, Lingjuan Lyu, Zhiwei Liu, Chaochao Chen,

Jia Wu, Xu Bai, and Philip S. Yu. 2022. Cross-Network Social User Embedding

with Hybrid Differential Privacy Guarantees. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management (Atlanta, GA,
USA) (CIKM ’22). Association for Computing Machinery, New York, NY, USA,

1685–1695. https://doi.org/10.1145/3511808.3557278

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (Montreal,

Quebec, Canada) (UAI ’09). AUAI Press, Arlington, Virginia, USA, 452–461.
[29] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalizedMarkov chains for next-basket recommendation. In Proceedings
of the 19th International Conference on World Wide Web (Raleigh, North Carolina,

USA) (WWW ’10). Association for Computing Machinery, New York, NY, USA,

811–820. https://doi.org/10.1145/1772690.1772773

[30] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-

based collaborative filtering recommendation algorithms. In Proceedings of the
10th International Conference on World Wide Web (Hong Kong, Hong Kong)

(WWW ’01). Association for Computing Machinery, New York, NY, USA, 285–295.

https://doi.org/10.1145/371920.372071

[31] Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy

Enhanced Matrix Factorization for Recommendation with Local Differential

Privacy. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018),

1770–1782. https://doi.org/10.1109/TKDE.2018.2805356

[32] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-

resentations from Transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1441–1450.

https://doi.org/10.1145/3357384.3357895

[33] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation

via Convolutional Sequence Embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (Marina Del Rey, CA,

https://github.com/cestwc/sequential-recommendation-bayesian-privacy
https://github.com/cestwc/sequential-recommendation-bayesian-privacy
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/2792838.2800173
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3442381.3449942
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3109859.3109882
https://doi.org/10.1109/ICDM.2016.0030
https://doi.org/10.1109/ICDM.2016.0030
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3269206.3271761
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1511.06939
https://doi.org/10.24963/ijcai.2017/258
https://doi.org/10.1145/3643821
https://doi.org/10.1145/3643821
https://doi.org/10.1145/3209978.3210017
https://doi.org/10.1145/3209978.3210017
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1145/2959100.2959165
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/2792838.2800191
https://doi.org/10.1145/3511808.3557320
https://doi.org/10.1145/3625007.3627305
https://doi.org/10.1145/3625007.3627305
https://doi.org/10.1145/3746252.3761039
https://doi.org/10.1145/3511808.3557278
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/371920.372071
https://doi.org/10.1109/TKDE.2018.2805356
https://doi.org/10.1145/3357384.3357895


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Wenchuan Mu and Kwan Hui Lim

USA) (WSDM ’18). Association for Computing Machinery, New York, NY, USA,

565–573. https://doi.org/10.1145/3159652.3159656

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,

Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, and

Shruti Bhosale andand others. 2023. Llama 2: Open Foundation and Fine-Tuned

Chat Models. CoRR abs/2307.09288 (2023). https://doi.org/10.48550/ARXIV.2307.

09288 arXiv:2307.09288

[35] Shoujin Wang, Liang Hu, Longbing Cao, Xiaoshui Huang, Defu Lian, and Wei

Liu. 2018. Attention-Based Transactional Context Embedding for Next-Item

Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence
32, 1 (Apr. 2018). https://doi.org/10.1609/aaai.v32i1.11851

[36] Wei Wang, Yujie Lin, Pengjie Ren, Zhumin Chen, Tsunenori Mine, Jianli Zhao,

Qiang Zhao, Moyan Zhang, Xianye Ben, and Yujun Li. 2025. Privacy-Preserving

Sequential Recommendation with Collaborative Confusion. ACM Trans. Inf. Syst.
43, 2, Article 50 (Jan. 2025), 25 pages. https://doi.org/10.1145/3707204

[37] Stanley L. Warner. 1965. Randomized Response: A Survey Technique for Elim-

inating Evasive Answer Bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

https://doi.org/10.1080/01621459.1965.10480775 PMID: 12261830.

[38] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A Dynamic

Recurrent Model for Next Basket Recommendation. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Pisa, Italy) (SIGIR ’16). Association for Computing Machinery, New

York, NY, USA, 729–732. https://doi.org/10.1145/2911451.2914683

[39] Hongyu Zhang, Dongyi Zheng, Xu Yang, Jiyuan Feng, and Qing Liao. 2024.

FedDCSR: Federated Cross-domain Sequential Recommendation via Disentangled

Representation Learning. In Proceedings of the 2024 SIAM International Conference
on Data Mining (SDM). 535–543. https://doi.org/10.1137/1.9781611978032.62

[40] Ruihan Zhang and Jun Sun. 2025. Correct-by-Construction: Certified Individ-

ual Fairness through Neural Network Training. Proc. ACM Program. Lang. 9,
OOPSLA2, Article 329 (oct 2025). https://doi.org/10.1145/3763107

[41] Tianqing Zhu, Gang Li, Wanlei Zhou, and Philip S. Yu. 2017. Differentially Private

Data Publishing and Analysis: A Survey. IEEE Transactions on Knowledge and Data
Engineering 29, 8 (2017), 1619–1638. https://doi.org/10.1109/TKDE.2017.2697856

https://doi.org/10.1145/3159652.3159656
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1609/aaai.v32i1.11851
https://doi.org/10.1145/3707204
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1145/2911451.2914683
https://doi.org/10.1137/1.9781611978032.62
https://doi.org/10.1145/3763107
https://doi.org/10.1109/TKDE.2017.2697856

	Abstract
	1 Introduction
	2 Preliminaries in the Sequential Recommendation Problem
	2.1 Sequences and Next-Item Recommendation
	2.2 Machine Learning in Sequential Recommendation

	3 Randomised-Response Sequential Recommendation
	3.1 Protecting Data Release with Randomised Response
	3.2 Training Sequential Recommender for Privacy-filtered Data

	4 Experiment
	5 Conclusion
	References

