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 A B S T R A C T

With the growing influence of the internet and information technology, Electrical and Electronic Equipment 
(EEE) has become a gateway to technological innovations. However, discarded devices, also called e-waste, 
pose a significant threat to the environment and human health if not properly treated, disposed of, or recycled. 
In this study, we extend a novel model for the e-waste collection in an urban context: the Heterogeneous VRP 
with Multiple Time Windows and Stochastic Travel Times (HVRP-MTWSTT). We propose a solution method 
that employs deep reinforcement learning to guide local search heuristics (DRL-LSH). The contributions of 
this paper are as follows: (1) HVRP-MTWSTT represents the first stochastic VRP in the context of the e-waste 
collection problem, incorporating complex constraints such as multiple time windows across a multi-period 
horizon with a heterogeneous vehicle fleet, (2) The DRL-LSH model uses deep reinforcement learning to 
provide an online adaptive operator selection layer, selecting the appropriate heuristic based on the search 
state. The computational experiments demonstrate that DRL-LSH outperforms the state-of-the-art hyperheuristic 
method by 24.26% on large-scale benchmark instances, with the performance gap increasing as the problem 
size grows. Additionally, to demonstrate the capability of DRL-LSH in addressing real-world problems, we 
tested and compared it with reference metaheuristic and hyperheuristic algorithms using a real-world e-waste 
collection case study in Singapore. The results showed that DRL-LSH significantly outperformed the reference 
algorithms on a real-world instance in terms of operating profit.
1. Introduction

Under the growing influence of the internet and information tech-
nology, Electrical and Electronic Equipment (EEE) has evolved into a 
gateway for accessing technological innovations. The rapid advance-
ments in both hardware and software have significantly shortened the 
update and release cycles of EEE, which offers convenience and comfort 
in our daily lives. However, from an environmental standpoint, the 
rapid turnover of EEE imposes substantial pressure on the environment 
due to their shortened life cycles. E-waste, or Waste Electrical and 
Electronic Equipment (WEEE), encompasses electrical and electronic 
devices that have reached the end of their functionality, service life, and 
life cycle, including all components, sub-assemblies, and consumables 
present at the time of disposal (Pérez-Belis et al., 2015). Improper 
disposal can lead to environmental pollution, posing risks to human 
health and squandering valuable raw materials that could be extracted 
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and processed for new products. Among waste categories, e-waste has 
emerged as one of the fastest-growing waste streams (Chaudhary & 
Vrat, 2018). It is estimated that approximately 61.3 million tons of 
e-waste will be discarded in 2023 (WEEE-Forum, 2023). However, 
only 17.4% of the total global e-waste is collected and recycled in 
an environmentally friendly manner. The cost of waste collection and 
transportation typically accounts for 60%–80% of the total waste man-
agement cost (Rangga et al., 2019). Therefore, effective transportation 
management in e-waste collection can significantly reduce operational 
costs. Additionally, the collection process is typically carried out by 
a heavy vehicle fleet. Without adequate planning, this can lead to 
numerous issues in urban areas, including increased pressure on road 
networks and worsened urban air pollution.

Vehicle Routing Problems (VRPs) have been extensively studied in 
the context of waste recycling transportation and closed-loop supply 
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chains (Nowakowski et al., 2018; Pourhejazy et al., 2021). In the 
context of e-waste collection, the variant of VRP typically involves 
complex planning tasks over a multi-period horizon, encompassing 
both fixed collection points (e-bins) and dynamic customer requests for 
household collection. These customer requests, often associated with 
time windows that change daily, introduce dynamic aspects to the 
problem (Gunawan, Nguyen , Yu et al., 2023; Pourhejazy et al., 2021; 
Szwarc et al., 2021).

Although prior research has addressed these practical consider-
ations, significant limitations persist in modeling e-waste collection 
systems — chiefly, the assumption of deterministic travel times. This 
assumption directly impacts service reliability, operational efficiency, 
and the cost-effectiveness of e-waste collection, particularly in daily 
collection tasks. Such tasks are highly sensitive to time-dependent edge 
traversal durations and vehicle speeds (Gendreau et al., 2015). E-waste 
collection tasks are typically executed by a heterogeneous fleet of ve-
hicles, constrained by operational factors such as e-waste size variation 
and road-width restrictions. The use of different vehicle types also 
introduces variability in speed, which significantly affects travel times. 
For example, larger vehicles may move slower due to traffic or require 
alternative routes to avoid narrow roads, whereas smaller vehicles may 
navigate faster but face random delays in dense traffic zones. Moreover, 
strategic placement of e-bins in high-traffic locations, such as malls and 
schools, makes travel times susceptible to local congestion. Like other 
urban routing problems, e-waste collection involves navigating densely 
populated areas where travel time stochasticity fluctuates significantly 
based on factors like time of day, road width, and congestion patterns. 
From an enterprise perspective, accounting for stochastic travel times 
can enhance service reliability, ultimately leading to higher customer 
satisfaction. Therefore, to make e-waste collection systems more real-
istic and effective, it is necessary to model the problem as a variant of 
the stochastic VRP.

Developing solution methods for stochastic variants of the e-waste 
collection problem presents substantial challenges. State-of-the-art ap-
proaches solving VRPs often model the problem as a sequential
decision-making task, tackled either through multi-stage optimization 
or reinforcement learning (RL) (Baty et al., 2024). However, both ap-
proaches face significant drawbacks in the context of stochastic e-waste 
collection. Multi-stage optimization suffers from high computational 
complexity, scalability issues, and limited adaptability to real-time 
updates. It also depends heavily on accurate probabilistic models, 
which are challenging to obtain in practice. RL, on the other hand, 
struggles with extensive training requirements, poor generalization 
to new scenarios, and difficulties in handling hard constraints such 
as time windows and vehicle capacities, often necessitating complex 
reward engineering. A promising alternative is a hybrid approach that 
employs heuristics to address complex constraints and combinatorial 
high-dimensional problems while leveraging RL to create an adaptive 
framework for handling the problem’s stochastic nature. This approach 
provides both generalization capabilities and efficiency in large-scale 
applications (Kallestad et al., 2023; Reijnen et al., 2024).

In this study, we extend previous research on the e-waste collection 
problem by introducing a new problem formulation that accounts 
for stochastic travel times, referred to as the Heterogeneous Vehicle 
Routing Problem with Multiple Time Windows and Stochastic Travel 
Times (HVRP-MTWSTT). This formulation incorporates various real-
world constraints, including a heterogeneous fleet and multi-period 
planning with time windows. To solve the HVRP-MTWSTT efficiently 
for practical-sized instances, we propose a novel method combining 
Deep Reinforcement Learning (DRL) with local search-based heuris-
tics, termed DRL-LSH. Compared to metaheuristic methods, DRL-LSH 
provides a more flexible and adaptive framework by leveraging in-
formation generated during the search process to enhance the search 
strategy. In comparison to hyperheuristics, DRL-LSH utilizes the power-
ful learning capabilities of DRL to improve the selection of appropriate 
2 
heuristic operators. Furthermore, compared to previous hybrid ap-
proaches (Kallestad et al., 2023; Reijnen et al., 2024), DRL-LSH extends 
beyond enhancing the adaptive operator selection layer of ALNS to 
offer a more general solution framework that integrates diverse classes 
of problem-dependent heuristics and is applicable to real-world and 
complex VRP applications. We validate this approach by applying it to a 
real-world e-waste collection case study in Singapore and comparing its 
performance against other metaheuristic and hyperheuristic methods.

Our contributions are summarized as follows:

1. We introduce a stochastic formulation of the e-waste collection 
problem, referred to as the Heterogeneous Vehicle Routing Prob-
lem with Multiple Time Windows and Stochastic Travel Times 
(HVRP-MTWSTT). This formulation incorporates critical real-
world constraints, including heterogeneous fleets, multiple time 
windows, multi-period planning, and stochastic travel times, 
reflecting the complexities of urban e-waste collection.

2. To address the challenges of solving complex and stochastic 
VRP variants like HVRP-MTWSTT, we propose a novel hybrid 
method, DRL-LSH, which integrates deep reinforcement learning 
with local search-based heuristics. DRL-LSH develops more ef-
fective search strategies in stochastic environments and demon-
strates scalability to large-scale, real-world instances. We evalu-
ated its performance through comparisons with multiple meta-
heuristic and hyperheuristic approaches and applied it to an 
e-waste collection case study in Singapore, showcasing its effec-
tiveness and practicality in real-world applications.

The remainder of the paper is organized as follows. Section 2 pro-
vides background knowledge on both the target problem, i.e., HVRP-
MTWSTT, and related algorithms, referencing the literature. Section 3 
introduces the Mixed-Integer Linear Programming (MILP) model for 
HVRP-MTWSTT. The proposed algorithmic strategy, i.e., DRL-LSH, is 
discussed in detail in Section 4. In Section 5, we evaluate the proposed 
method and compare it with other reference algorithms using both 
synthetic and real-world instances. Finally, Section 6 concludes our 
study and discusses limitations and future research directions.

2. Related work

In this study, we position the relevance of this work within two 
key research lines. To the best of our knowledge, HVRP-MTWSTT 
represents the first formulation of the e-waste collection problem as 
a stochastic VRP variant. Developing a solution method for such a 
complex and stochastic VRP variant requires an approach capable of ef-
fectively handling intricate constraints and stochastic travel times while 
maintaining scalability for practical-sized instances. To address these 
challenges, we build on the concept of integrating DRL as an adaptive 
operator selection mechanism to dynamically choose among various 
local search-based heuristics. Based on this approach, we propose DRL-
LSH — a hybrid method designed to solve the HVRP-MTWSTT problem 
efficiently. This method leverages the learning capabilities of DRL to 
ensure scalability for large-scale instances. We provide an overview of 
these research lines in the following sections.

2.1. Vehicle routing problem with the application in e-waste collection

The VRP is an important class of problems with many applica-
tions and has been extensively researched in the field of Operations 
Research for several decades. However, the application of VRP to e-
waste collection has only recently gained attention due to the alarming 
increase in the amount of e-waste generated worldwide each year. The 
e-waste collection process presents unique challenges and features not 
encountered in other fields, necessitating more intensive research to 
develop efficient collection strategies.  Belonging to the class of waste 
collection problems, e-waste collection shares characteristics such as 
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multiple periodic planning and the use of heterogeneous vehicles for 
collection tasks. The planning of e-waste collection over a multi-period 
horizon is a natural consequence of the fact that not all e-bins (fixed 
collection points) are collected daily (Hess et al., 2024). With the 
advancement of IoT, e-bins can be considered ‘‘smart bins’’, equipped 
with sensors that transmit trash level information to a centralized 
information system. This allows operators to decide whether an e-bin 
should be collected the following day or in the coming days, depending 
on the routing plan. Additionally, the use of heterogeneous vehicles 
in e-waste collection is a practical response to the variation in e-
waste sizes and the differing accessibility of local roads. Beyond these 
characteristics, the e-waste collection process often involves two types 
of collection sites: on-demand collection requests from households 
and companies, and e-bins (Pourhejazy et al., 2021). The former is 
typically associated with preferred time windows requested by cus-
tomers — an aspect that is not usually considered in municipal waste 
collection processes (Szwarc et al., 2021). Ensuring that e-waste is 
collected within customer-preferred time windows is a critical con-
straint in the e-waste collection problem, as it significantly impacts both 
revenue and customer satisfaction. Furthermore, on-demand requests 
introduce additional challenges due to their dynamic and variable 
locations and timings, adding complexity to the problem. The following 
is an overview of how previous research in the literature has addressed 
these aspects in the context of e-waste collection.

In previous research, modeling the e-waste collection process typi-
cally revolves around two variants of VRPs: VRP with Time Windows 
(VRPTW) and the Team Orienteering Problem (TOP) (Szwarc et al., 
2021). When modeling e-waste collection as VRPTW, four algorithms 
were proposed in Nowakowski et al. (2018): Simulated Annealing, Tabu 
Search, Greedy, and improved Bee Colony Optimization. It concerns 
a collection support system and is tested using real-world data from 
Tokyo, Philadelphia, and Warsaw. For the integrated collection scheme 
that simultaneously accommodates on-call and door-to-door demands, 
an original capacitated general routing with time-window (CGRPTW) 
model was introduced in Pourhejazy et al. (2021). The mathematical 
model is formulated as Mixed-Integer Linear Programming (MILP), and 
Tabu Search is proposed to solve the problem. A model for e-waste 
collection encompassing both households and mobile collection was 
proposed in Król et al. (2016). This problem was addressed as a VRP 
with intermediate facilities, heterogeneous vehicles, considerations for 
breaks between shifts, and regional cost differences. Genetic algorithms 
were utilized, with a case study from Poland. Recently, the more com-
plex e-waste collection problem was investigated (Gunawan, Nguyen, 
Nguyen et al., 2023). The problem is formulated as a heterogeneous 
VRP, accounting for multiple collection periods with varying time 
windows. This was termed the Heterogeneous VRP with Multiple Time 
Windows (HVRP-MTW). The collection points consider both customer 
requests and public drop-off e-waste collection points (e-bins). A hybrid 
metaheuristic, based on a Greedy Randomized Adaptive Search Proce-
dure reinforced by Path-Relinking (GRASP-PR), was proposed to solve 
newly developed instances. It outperformed CPLEX in terms of both 
solution quality and computational time.

While previous studies have modeled the e-waste collection problem 
as a VRP and incorporated complex real-world constraints, a significant 
gap in real-world e-waste collection systems is the lack of consideration 
for uncertainty in travel time. This oversight significantly impacts 
service reliability, operational efficiency, and cost-effectiveness. The 
importance of incorporating stochastic travel time arises from the in-
herent characteristics of the e-waste collection problem — multi-period 
planning, a heterogeneous fleet of vehicles, time-dependent tasks, and 
the strategic placement of e-bins — all of which influence vehicle 
travel times, arrival schedules, and, ultimately, the overall objective 
value of the solution. In contrast, stochastic VRPs have been extensively 
studied in other domains. For comprehensive reviews of stochastic (and 
dynamic) VRPs, we refer readers to the surveys by Ritzinger et al. 
(2016) and Soeffker et al. (2022). Modeling the e-waste collection 
problem as a variant of the stochastic VRP, while retaining its specific 
and complex constraints, is expected to advance more realistic and 
practical approaches in this field of research.
3 
2.2. Adaptive operation selection for VRP

Recently, the rapid growth of the Machine Learning (ML) field 
has created significant opportunities to enhance the performance of 
existing optimization algorithms or solve combinatorial optimization 
problems using end-to-end ML approaches. To keep our literature 
review concise, we will focus specifically on our method of using 
Reinforcement Learning to enhance heuristic-based methods for solving 
the VRP. For a broader overview of the field, we refer readers to the 
surveys by Bengio et al. (2021), Hildebrandt et al. (2023), and Karimi-
Mamaghan et al. (2022). Other approaches beyond adaptive operator 
selection for solving the stochastic and dynamic VRP can be found 
in Baty et al. (2024), Serrano et al. (2024) and Zhang, Luo et al. (2023). 
For other ML-based approaches to stochastic and dynamic VRP, readers 
can refer to the competition held at IJCAI 2021, as discussed in Zhang, 
Bliek et al. (2023).

Before delving into the related works of our proposed method, it 
is worth to distinguish between low-level heuristics, metaheuristics, 
and hyper-heuristics, which are different types of methods applied to 
search for solutions to combinatorial optimization problems. Low-level 
heuristics refer to problem-specific techniques designed for particular 
problems (Pillay & Qu, 2018). Meanwhile, metaheuristics are a class 
of approximate optimization methods that orchestrate and guide the 
interaction between local improvement techniques and higher-level 
strategies, creating an iterative search process capable of escaping local 
optima and conducting a robust exploration of the search space (Gen-
dreau et al., 2010).  Finally, hyper-heuristics govern the selection of 
low-level heuristics based on the region of the solution space being 
explored (Martí et al., 2024). While metaheuristics require expertise 
to be tailored for specific problems, hyper-heuristics provide gener-
alized solutions across problem domains by working on the heuris-
tic space instead of the solution space (Ozcan et al., 2009). Their 
problem-independent nature is maintained through a domain barrier, 
which restricts explicit knowledge of the problem being solved. Fig. 
1 illustrates the differences in generality between metaheuristics and 
hyper-heuristics.

In hyper-heuristics, the step of selecting heuristics largely depends 
on the concept of Operator Selection (OS), which is motivated by the 
fact that the efficiency of individual operators can vary across different 
regions of the search space (Drake et al., 2020; Fialho, 2010). An op-
erator may perform well in certain search regions but poorly in others. 
Therefore, selecting the most appropriate operator at the right time can 
enhance performance by balancing exploration and exploitation.  Meta-
heuristics have also employed OS strategies, as exemplified by Adaptive 
Large Neighborhood Search (ALNS) (Ropke & Pisinger, 2006), which 
builds on the Large Neighborhood Search (LNS) metaheuristic (Shaw, 
1998) through the use of OS. Beyond the fundamental concept of OS, 
Adaptive Operator Selection (AOS) (Fialho, 2010) dynamically chooses 
operators during the search process. From an algorithmic perspective, 
AOS can be considered a branch of Automated Algorithm Design. For 
further exploration in this area, we recommend (Adriaensen et al., 
2022; Di Liberto et al., 2016).

In connection with the AOS’ exploration and exploitation focus, 
Reinforcement Learning (RL) has been the leading ML approach to 
perform AOS. The RL algorithms are designed to learn (near-) opti-
mal policies by iteratively interacting with an environment. Various 
techniques have been devised to effectively manage the exploration–
exploitation trade-off. Concerning AOS, RL primarily serves as a Credit 
Assignment (CA) mechanism (Gunawan et al., 2018; Lu et al., 2020). 
It has been especially effective, both in terms of solution quality and 
convergence speed, on the problem instances of increasing size (dos 
Santos et al., 2014; Zhao et al., 2021).

Regarding AOS in metaheuristics, ALNS is one metaheuristic that 
incorporates an adaptive layer into the search procedure, recording the 
past performance of pairs of ‘‘removal’’ and ‘‘insertion’’ operators for 
future selection. However, the adaptive layer of ALNS typically only has 
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Fig. 1. Metaheuristics and hyper-heuristics in different generality levels.
a minor impact on the solution quality (Hemmati & Hvattum, 2017). 
Furthermore, the information provided for the adaptive layer is derived 
solely from the past performance of heuristics based on the generated 
solution quality. This can limit its decision-making capability due to a 
lack of comprehensive information about the current state of the search. 
ALNS also faces challenges when selecting operators from a large pool 
of problem-dependent heuristics. Consequently, recent studies have 
employed DRL as a selection mechanism for the ALNS framework. 
For instance, a DRL Hyperheuristic (DRLH) (Kallestad et al., 2023) 
was compared with ALNS and Uniform Random Selection (URS) on 
three routing problems: the Capacitated VRP (CVRP), the Pickup and 
Delivery Problem (PDP), and the PDP with Time Windows (PDPTW). 
DRLH outperformed ALNS in selecting operators from a large pool 
in fewer iterations for all those problems. Moreover, the performance 
gap between DRLH and the two reference algorithms widened as the 
problem size increased, making DRLH particularly suitable for real-
world scenarios. Another study (Reijnen et al., 2024) employed DRL 
in ALNS for the Time-dependent Orienteering Problem with Stochastic 
Weights and Time Windows (TD-OPSWTW). DRL-ALNS outperformed 
two other ALNS variants in terms of solution quality and speed in 
comparison to the end-to-end DRL approaches. In both research efforts 
that integrated DRL into ALNS, the Proximal Policy Optimization (PPO) 
algorithm (Schulman et al., 2017) was utilized.

Our motivation for using a DRL-based AOS approach lies in the 
limitations of existing methods for stochastic VRPs. Multi-stage stochas-
tic optimization methods are computationally expensive for large-
scale applications, while end-to-end RL approaches struggle with high-
dimensional combinatorial problems (Baty et al., 2024). A hybrid 
method that combines DRL with optimization methods is a promising 
alternative. Recent studies have explored the integration of DRL with 
ALNS to enhance its adaptive layer, focusing on macro-level operator 
control and improving generalization. While these approaches are well-
suited for generic VRPs, they may not fully capture application-specific 
challenges. In this work, we address HVRP-MTWSTT, a real-world 
VRP variant that incorporates complex constraints and stochastic travel 
times. Solving this problem efficiently at scale requires fine-grained, 
micro-level route adjustments to meet its intricate constraints. Local 
search (LS), a key component in successful metaheuristics like GRASP 
and Iterated Local Search, offers efficient, localized optimization at the 
solution level. By combining DRL with LS, we propose a powerful, 
adaptive framework tailored for HVRP-MTWSTT, enabling scalability 
and effective handling of stochastic and large-scale applications. 

3. Problem definition

The Heterogeneous Vehicle Routing Problem with Multiple Time 
Windows and Stochastic Travel Times (HVRP-MTWSTT) can be repre-
sented as a weighted and complete directed graph 𝐺 = (𝑁,𝐴) in which 
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𝑁 = {0, 1,… , 𝑛, 𝑛 + 1} is the set of nodes and 𝐴 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠
𝑗, 𝑖 ≠ 𝑛+1, 𝑗 ≠ 0} is the set of arcs. In this graph, two nodes 0 and 𝑛+1
represent the departing and returning depots, which can be identical 
nodes. The e-waste collection processes are conducted in |𝐾| days with 
𝐾 = {1, 2,… , |𝐾|} is the set of collection days.

The problem involves two types of collection locations: on-demand 
collection requests from households or customers’ doorsteps 𝑁1 ⊂ 𝑁
and public drop-off locations (e-bins) 𝑁2 ⊂ 𝑁 . The e-bins are a 
type of smart bins equipped with sensors that can send information 
to the system about the amount of e-waste collected. Each day, the 
system updates the information on which e-bins need to be emptied, 
enabling staff to identify the bins requiring collection and the quantity 
of e-waste in each. Generally, the amount of e-waste usually does not 
exceed the e-bin capacity, so we do not consider the e-bin capacity 
in our model. Additionally, on-demand collection requests are made 
through a mobile application, where customers specify the amount of 
e-waste they have and the time of day they are available for collection. 
Therefore, the e-bins are available throughout the entire |𝐾| days, while 
customer requests are available only within a time window [𝑙𝑘𝑖 , 𝑢𝑘𝑖 ] on 
each day 𝑘, where 𝑙𝑘𝑖  and 𝑢𝑘𝑖  represent the lower and upper bounds of 
the time window for customer 𝑖 on day 𝑘. For on-demand collection 
services, each customer 𝑖 will be charged an amount of 𝑝𝑖 for the 
individual request. Each collection location has a demand 𝑑𝑖 which 
requires the amount of time of 𝑠𝑖 to serve.  In practice, due to diverse 
operational and logistical requirements such as e-waste characteristics, 
accessibility, environmental considerations, and regulatory compliance, 
e-waste collection tasks are typically carried out using a heterogeneous 
fleet of vehicles. In this model, this setting is simplified by representing 
the fleet as a set of heterogeneous vehicles 𝑉 = {1, 2,… , |𝑉 |} employed 
for the collection task. Each vehicle 𝑣 ∈ 𝑉  is characterized by a 
capacity 𝑞𝑣 and an operational cost 𝑐𝑣 per unit of time. To simplify the 
modeling process, we do not include constraints related to road width 
and regulatory compliance in our model.

Due to the unique characteristics of the e-waste collection problem, 
such as multi-period collection, the use of heterogeneous vehicles, 
the strategic placement of e-bins in crowded areas, and operations 
conducted in urban settings, the travel time of vehicles on each edge is 
modeled as a stochastic variable. Let 𝑡𝑖𝑗 represent the stochastic travel 
time associated with arc (𝑖, 𝑗). These stochastic travel times are only 
revealed after the vehicles traverse the respective arcs. Since there is 
no prior knowledge about the distribution of travel times on the road 
network, we adopt the approach proposed by Reijnen et al. (2024) 
to model the stochastic travel times. Specifically, 𝑡𝑖𝑗 is computed by 
multiplying the Euclidean distance 𝑑𝑖𝑗 by a noise term 𝜂, which follows 
a discrete uniform distribution U{1, 100}, and normalizing the result by 
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Fig. 2. A solution of the HVRP-MTWSTT with four collection days.
a scaling factor 𝛽 = 100. The stochastic travel times 𝑡𝑖𝑗 are sampled as 
follows: 
𝑡𝑖𝑗 = 𝑑𝑖𝑗

𝜂
𝛽

(1)

Due to the stochastic travel time, the arrival time 𝑎̃𝑖 at node 𝑖 is 
also a random variable. Therefore, when a vehicle arrives at customer 
𝑖 before the lower bound of its time windows 𝑙𝑘𝑖 , the vehicle 𝑣 has to 
wait for serving customer 𝑖, and an idle fee 𝜓𝑣 per unit of time will 
be imposed. On the other hand, if a vehicle arrives at customer 𝑖 after 
upper bound 𝑢𝑘𝑖 , a penalty fee 𝜙𝑣 per unit of time will be imposed. The 
arrival time at node 𝑗 when traveling from customer 𝑖 is calculated by: 
𝑎̃𝑗 = max{𝑎̃𝑖, 𝑙𝑘𝑖 } + 𝑠𝑖 + 𝑡𝑖𝑗 (2)

Fig.  2 illustrates a possible HVRP-MTWSTT solution. The math-
ematical model is formulated below with the variables listed and 
summarized in the supplementary materials (Part A).

max
∑

𝑖∈𝑁1

𝑝𝑖 − E

{

∑

𝑖∈𝑁⧵{𝑛+1},𝑗∈𝑁⧵{0},𝑘∈𝐾,𝑣∈𝑉

[

(𝑡𝑖𝑗 + 𝑠𝑗 )𝑐𝑣

+ 𝛿𝑘𝑣𝑗 𝜓
𝑣 + 𝜁𝑘𝑣𝑗 𝜙

𝑣
]

𝑥𝑘𝑣𝑖𝑗

}

(3)

𝑠.𝑡.
∑

𝑘∈𝐾

∑

𝑣∈𝑉

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖𝑗 = 1 ∀𝑗 ∈ 𝑁 (4)

∑

𝑣∈𝑉

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖𝑗 ≤ 𝑦𝑘𝑗 ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 (5)

∑

𝑘∈𝐾

∑

𝑗∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣0,𝑗 = 1 ∀𝑣 ∈ 𝑉 (6)

∑

𝑘∈𝐾

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖,𝑛+1 = 1 ∀𝑣 ∈ 𝑉 (7)

∑

𝑗∈𝑁⧵{0}
𝑥𝑘𝑣0,𝑗 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (8)

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖,𝑛+1 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (9)

∑

𝑣∈𝑉

∑

𝑗∈𝑁⧵{0}
𝑥𝑘𝑣0,𝑗 −

∑

𝑣∈𝑉

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖,𝑛+1 = 0 ∀𝑘 ∈ 𝐾 (10)

∑

𝑘∈𝐾

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖𝑗 −

∑

𝑘∈𝐾

∑

𝑖∈𝑁⧵{0}
𝑥𝑘𝑣𝑗𝑖 = 0 ∀𝑗 ∈ 𝑁 ⧵ {0, 𝑛 + 1},∀𝑣 ∈ 𝑉 (11)

∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖𝑗 −

∑

𝑖∈𝑁⧵{0}
𝑥𝑘𝑣𝑗𝑖 = 0 ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (12)

𝐿𝑘𝑣𝑗 −𝐿𝑘𝑣𝑖 − 𝑞𝑣
(

1−𝑥𝑘𝑣𝑖𝑗
)

≤ 𝑑𝑗 ∀𝑖 ∈ 𝑁 ⧵ {𝑛+1}, 𝑗 ∈ 𝑁 ⧵ {0}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

(13)

𝐿𝑘𝑣𝑗 −𝐿𝑘𝑣𝑖 + 𝑞𝑣
(

1−𝑥𝑘𝑣𝑖𝑗
)

≥ 𝑑𝑗 ∀𝑖 ∈ 𝑁 ⧵ {𝑛+1}, 𝑗 ∈ 𝑁 ⧵ {0}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

(14)
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𝐿𝑘𝑣𝑗 ≤ 𝑞𝑣
∑

𝑖∈𝑁⧵{𝑛+1}
𝑥𝑘𝑣𝑖𝑗 ∀𝑗 ∈ 𝑁 ⧵ {0}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (15)

𝐿𝑘𝑣0 = 0 ∀𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (16)

𝐿𝑘𝑣𝑛+1 ≤ 𝑞𝑣
∑

𝑗∈𝑁⧵{0}
𝑥𝑘𝑣0𝑗 ∀𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (17)

𝑎̃𝑘𝑣𝑗 − 𝑎̃𝑘𝑣𝑖 − 𝑠𝑖 −𝑀
(

1 − 𝑥𝑘𝑣𝑖𝑗
)

≤ 𝑡𝑖𝑗 ∀𝑗 ∈ 𝑁 ⧵ {0, 𝑛+ 1}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (18)

𝑎̃𝑘𝑣𝑗 − 𝑎̃𝑘𝑣𝑖 − 𝑠𝑖 +𝑀
(

1 − 𝑥𝑘𝑣𝑖𝑗
)

≥ 𝑡𝑖𝑗 ∀𝑗 ∈ 𝑁 ⧵ {0, 𝑛+ 1}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (19)

𝑎̃𝑘𝑣𝑖 + 𝑡𝑖,𝑛+1+
(

𝑢𝑘𝑛+1− 𝑙
𝑘
0

)(

1−𝑥𝑘𝑣𝑖,𝑛+1
)

≥ 𝑙𝑘𝑛+1 ∀𝑖 ∈ 𝑁 ⧵{𝑛+1}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

(20)

𝑎̃𝑘𝑣𝑖 + 𝑡𝑖,𝑛+1 ≤ 𝑢𝑘𝑛+1+
(

𝑢𝑘𝑛+1− 𝑙
𝑘
0

)(

1−𝑥𝑘𝑣𝑖,𝑛+1
)

∀𝑖 ∈ 𝑁 ⧵{𝑛+1}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

(21)

𝛿𝑘𝑣𝑖 =

{

𝑙𝑘𝑖 − 𝑎̃
𝑘𝑣
𝑖 , if 𝑙𝑘𝑖 − 𝑎̃

𝑘𝑣
𝑖 > 0 ∀𝑖 ∈ 𝑁1, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

0, otherwise
(22)

𝜁𝑘𝑣𝑖 =

{

𝑎̃𝑘𝑣𝑖 − 𝑢𝑘𝑖 , if 𝑎̃𝑘𝑣𝑖 − 𝑢𝑘𝑖 > 0 ∀𝑖 ∈ 𝑁1, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉

0, otherwise
(23)

𝑥𝑘𝑣𝑖𝑗 , 𝑦
𝑘
𝑗  binary ∀𝑖 ∈ 𝑁 ⧵ {𝑛 + 1}, 𝑗 ∈ 𝑁 ⧵ {0}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (24)

𝐿𝑘𝑣𝑖 , 𝑎̃
𝑘𝑣
𝑖 , 𝛿

𝑘𝑣
𝑖 , 𝜁

𝑘𝑣
𝑖  non-negative ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉 (25)

The objective function (3) aims to maximize the profit generated 
by the e-waste collection process, taking into account the income from 
on-demand collections as well as the costs associated with operations, 
idle time and penalties caused by uncertain travel times. Constraints (4) 
require that all e-bins and on-demand customers are visited by exactly 
one vehicle. Constraints (5) impose that on-demand customers can only 
be served during their available time periods. Constraints (6) to (9) 
specify that each vehicle departs and returns at most once during the 
specified collection period. Constraint (10) ensures that all the departed 
vehicles return to the depot on the same day. Constraints (11) and (12) 
imply that a vehicle arriving at node 𝑗 must leave it on the same day. 
Constraints (13) and (14) are conservation of flow constraints, which 
guarantee that they pick-up the exact amount of e-waste from node 
𝑖 ∈ 𝑁 ⧵ {0, 𝑛 + 1}. These constraints also eliminate sub-tours.

Constraints (15) show that the loads of each vehicle cannot exceed 
its maximum capacity at any node 𝑖 ∈ 𝑁⧵{0}. Constraints (16) initialize 
the load for each vehicle at depot 0. Constraints (17) shows that the 
load of vehicle 𝑣 ∈ 𝑉  at depot 𝑛 + 1 must not exceed its capacity. 
Constraints (18) and (19) verify the travel time of the vehicles in the 
each time period 𝑘 ∈ 𝐾. Constraints (20) and (21) ensure all vehicles 
return to the depot within the operation hour of Depot 𝑛+1. Constraints
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(22) calculate the idle time 𝛿𝑘𝑣𝑖  if vehicle 𝑣 ∈ 𝑉  arrives earlier than the 
time window lower bound 𝑙𝑘𝑖  of node 𝑖 ∈ 𝑁1 on day 𝑘 ∈ 𝐾. Constraints 
(23) calculate the penalty time if vehicle 𝑣 ∈ 𝑉  arrives after the time 
window upper bound 𝑢𝑘𝑖  of node 𝑖 ∈ 𝑁1 on day 𝑘 ∈ 𝐾. Constraints (24) 
and (25) are feasible regions of the decision variables.

The following part presents the linearization of two non-linear 
Constraints (22) and (23) by Constraints (26)–(30). Two binary decision 
variables 𝜅𝑘𝑣𝑖  and 𝜌𝑘𝑣𝑖 , indicating whether vehicle 𝑣 ∈ 𝑉  arrives at node 
𝑖 ∈ 𝑁0 earlier/later than the given time windows at day 𝑘 ∈ 𝐾 or not, 
are introduced. Constraints (26) and (27) compute the idle time 𝛿𝑘𝑣𝑖  for 
the early arrival of vehicle 𝑣 ∈ 𝑉  at node 𝑖 ∈ 𝑁1 while Constraints (28) 
and (29) compute the penalty time 𝜁𝑘𝑣𝑖  for late arrival of vehicle 𝑣 ∈ 𝑉
at node 𝑖 ∈ 𝑁1. Constraints (30) define the variable domains. 
𝛿𝑘𝑣𝑖 ≤𝑀𝜅𝑘𝑣𝑖 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (26)

𝑙𝑘𝑖 − 𝑎̃
𝑘𝑣
𝑖 ≤ 𝛿𝑘𝑣𝑖 ≤ 𝑙𝑘𝑖 − 𝑎̃

𝑣𝑘
𝑖 +𝑀(1 − 𝜅𝑘𝑣𝑖 ) ∀𝑖, 𝑘, 𝑣 ∈ 𝑁,𝐾, 𝑉 (27)

𝜁𝑘𝑣𝑖 ≤𝑀𝜌𝑘𝑣𝑖 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (28)

𝑎̃𝑘𝑣𝑖 − 𝑢𝑘𝑖 ≤ 𝜁𝑘𝑣𝑖 ≤ 𝑎̃𝑣𝑘𝑖 − 𝑢𝑘𝑖 +𝑀(1 − 𝜌𝑘𝑣𝑖 ) ∀𝑖, 𝑘, 𝑣 ∈ 𝑁,𝐾, 𝑉 (29)

𝜅𝑘𝑣𝑖 , 𝜌
𝑘𝑣
𝑖 binary ∀𝑖 ∈ 𝑁 ⧵ {0}, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 (30)

4. Deep reinforcement learning to control local search operators 
(DRL-LSH)

In this section, we introduce solution methods for the HVRP-
MTWSTT that utilize deep reinforcement learning (DRL) to control 
local search operators throughout the search process, denoted as DRL-
LSH. Specifically, we model the search process for solving the HVRP-
MTWSTT as a sequential decision-making problem. Within this frame-
work, deep reinforcement learning agent interacts with the search 
procedure, guiding the selection of appropriate heuristic operators 
based on the current state of the search.

The proposed DRL-LSH framework is illustrated in Fig.  3. Specifi-
cally, at each decision step, the DRL agent relies on the state of the 
search process, which includes various features related to the solution 
found and the search iteration. Since DRL-LSH uses a policy-gradient 
method for learning, it outputs a probability distribution over actions, 
which corresponds to different heuristic operators. The agent then 
samples an action from a set of heuristic operators (𝐻1,… ,𝐻𝑛) to apply 
to the current solution, aiming to enhance it. The reward is determined 
based on the quality improvement of the solution achieved by the 
chosen action. Using this collective information, which includes the 
state, action, and reward, the DRL agent updates its weights to learn 
the optimal actions for a given search state.

4.1. Modeling the search procedure as a Markov decision process

The search process is modeled as a Markov Decision Process (MDP), 
wherein 𝑆 represents the set of states, 𝑅 represents the reward function, 
and 𝐴 represents the set of actions. The primary goal of the DRL agent 
is to acquire a policy 𝜋, which maps a state 𝑠𝑡 to an action 𝑎𝑡 at time 
step 𝑡, ultimately aiming to maximize the expected cumulative future 
rewards. The explicit details concerning the state space 𝑆, action space 
𝐴, and reward function 𝑅 are elaborated below.
State Space: The DRL agent will take actions based on the current state 
𝑠𝑡 of the search. We formulate the state 𝑠 as a one-dimensional vector 
comprising 8 features, as described in Table  1. The state provides the 
agent with information about the differences between the newly found 
solution and the current solution, as well as the number of iterations 
without restarting and improvement. Additionally, since we use path-
relinking as an action of DRL-LSH, we need to maintain an elite solution 
pool 𝑃  during the search. Therefore, the state 𝑠  will also contain the 
𝑡

6 
information whether the new solution is good enough to be included 
in the solution pool 𝑃  for the path-relinking procedure. This helps the 
DRL agent to become aware of the current search state and take actions 
to maximize returns.
Actions: In the proposed framework of DRL-LSH, the actions consist of 
various operators that explore different neighborhoods of the current 
solution and generate new solutions to escape from the local optimum. 
We utilize 13 different actions, which are explained below. The details 
can be found in the supplementary materials (Part B).
<Action 0> The first action is to construct a feasible solution. We 
employ a construction heuristic that is based on the Clarke and Wright 
heuristic, which is augmented with the Realistic Opportunity Savings - 
𝛾 approach for heterogeneous fleet, as proposed by Golden et al. (1984). 
While the Clarke and Wright heuristic is effective for handling capacity 
constraints, it does not address collection period constraints. For this 
issue, a repair operator is incorporated to ensure solution feasibility 
under collection period constraints (Gunawan, Nguyen, Nguyen et al., 
2023). Additionally, since travel time is stochastic, we use the maxi-
mum travel time when constructing new solutions using the Clarke and 
Wright heuristic. With these modifications, our construction heuristic 
is capable of producing feasible solutions.
<Actions 1 to 11> They represent local search operators utilizing the 
following neighborhoods (𝑁1 to 𝑁11) as a local search procedure in 
the first-improvement strategy:

N1. Intra-relocation: N1 explores the neighborhood solution by 
removing customer 𝑖 from route 𝑣𝑖 and then reinserting 𝑖 at 
another position in the same route 𝑣𝑖.
N2. Inter-relocation: N2 removes customer 𝑖 from its current route 
𝑣𝑖 and reinserts 𝑖 to a new route 𝑣𝑗 provided that there is at 
least one day in the available period of 𝑖 that coincides with the 
collection day of 𝑣𝑗 . Additionally, the total capacity of 𝑣𝑗 after 
the reinsertion must not exceed the capacity of the largest vehicle 
used.
N3. Intra-swap: N3 selects node 𝑖 in route 𝑣𝑖 and swaps it with 
another node 𝑗 in the same route.
N4. Inter-swap: N4 selects node 𝑖 from route 𝑣𝑖 and another node 
𝑗 from a different route 𝑣𝑗 . The selected nodes are swapped 
provided that their available period are compatible with their 
target routes’ 𝑣𝑖 and 𝑣𝑗 collection day. Furthermore, the total 
demand of the two routes 𝑣𝑖 and 𝑣𝑗 after swapping must not 
exceed the maximum capacity of the largest vehicle in the fleet.
N5. 2-opt (intra-route): a new solution is built from an initial 
solution 𝑥 by removing two consecutive arcs (𝑖, 𝑖+1) and (𝑗, 𝑗 +1)
from route 𝑣𝑖. Then, two other arcs (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1) are 
added to reconnect the selected routes. As a result, the subpath 
excluding the depot between 𝑖 + 1 and 𝑗 is inverted.
N6. 2-opt* (inter-route): the principle of generating a new solution 
using the N6 move is similar to that of N5. However, the N6 
selects and removes two arcs (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) from two 
distinct routes 𝑣𝑖 and 𝑣𝑗 , respectively. Two new arcs are then 
added to reconnect the selected routes, and both the inverted and 
non-inverted subpath versions of the new routes are considered. 
The N6 selects the higher-profit neighborhood between the two 
versions of new solutions. The condition of this action is that the 
two selected routes 𝑣𝑖 and 𝑣𝑗 have the same collection day and 
the two new routes after reconnecting have to satisfy the capacity 
constraint.
N7. or-opt (inter-route): the solution is defined by relocating a 
subpath (𝑖 + 1,… , 𝑗) from route 𝑣𝑖 to another route 𝑣𝑗 . The 
conditions for applying the move are the same as those for the 
N6.
N8. 3-opt (intra-route): N8 deletes three arcs (𝑖, 𝑖+1), (𝑗, 𝑗+1), and 
(𝑙, 𝑙+1) in a route 𝑣𝑖. It then considers all ways to reconnect these 
subpaths, including both inverted and non-inverted versions. In 
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Fig. 3. DRL-LSH framework.
Table 1
State space features for DRL-LSH.
 Feature Description  
 Previous action Integer feature indicates the action taken in previous iteration  
 Local improvement Binary feature indicates whether the current solution was accepted and better than previous solution 
 Global improvement Binary feature indicates whether current found solution was better than the best solution so far  
 Current iteration The current iteration of the search process  
 Acc_Restart The number of consecutive iterations without restarting the search procedure  
 cost_diff_best Percentage difference between the objective values of current and best solution  
 Acc_No_Impr The number of consecutive iterations without improving the best-found solution  
 Update_to_P Binary feature indicates whether current solution is allowed to enter elite solution pool or not  
total, eight neighborhoods are explored, and the action selects the 
one with the highest profit.
N9. Add new route: N9 randomly selects a node 𝑖 from route 𝑣𝑖 and 
removes it. Then, it creates a new single tour 𝑣′𝑖 from node 𝑖. The 
collection day 𝑘𝑣 for tour 𝑣′𝑖 is selected by comparing the profits 
of the solution if route 𝑣′𝑖 is carried out in different days within 
the collection period 𝐾𝑣. Next, the solution with the highest profit 
is selected. The condition for applying this action is still having 
unused vehicles.
N10. Split to single: N10 deletes two randomly selected nodes 𝑖
and 𝑗 from two distinct routes 𝑣𝑖 and 𝑣𝑗 , respectively. It then 
creates a new tour by connecting those nodes. There are two 
neighborhoods created by N10 and the one with the higher profit 
is selected. The condition for this move is that the two selected 
nodes 𝑖 and 𝑗 must have at least one available day in common.
N11. Combine tours: N11 selects two random tours 𝑣𝑖 and 𝑣𝑗 that 
have a combined total capacity that is less than the maximum 
capacity of the largest vehicle in the fleet. It then combines these 
tours to create a new tour. Two neighborhoods are created by the 
N11, and the one with the higher profit is selected.

<Action 12> Path-relinking is an intensification mechanism (Glover, 
1997). It relinks the current solution with an elite solution in the 
solution pool to find a promising solution.
Reward Function: At each time step, the environment sends the DRL 
agent a single number called a reward, which defines the goal of 
RL. Good reward strategies need to avoid the reward hacking be-
havior (Amodei et al., 2016) of the agent, where the agent keeps 
exploiting the reward function to increase the reward without actually 
optimizing the intended objective. Therefore, the reward function needs 
to balance the need for gradual and incremental rewards while avoiding 
the reward hacking behavior of the agent (Kallestad et al., 2023).

In the earlier studies integrating DRL into ALNS (Kallestad et al., 
2023; Reijnen et al., 2024), the reward function utilizes the operator 
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scoring system of the vanilla ALNS (Ropke & Pisinger, 2006). This 
system encourages the agent to find a new solution 𝑥′ better than the 
current solution 𝑥 and gives a higher reward if the new solution 𝑥′ is 
better than the best solution so far 𝑥∗. Additionally, a small reward 
is given to the agent if the newly found solution 𝑥′ is worse than 
the current solution 𝑥 but satisfies the acceptance criterion, e.g., SA 
acceptance condition. This reward function can work well in the ALNS 
environment but may lead to reward hacking in our framework. The 
DRL agent exploits the reward function by continuously creating a new 
solution (restarting the search) and applying only one improvement 
operator to improve this solution, then iterating these steps again to 
hack the reward. In our framework, we only encourage the DRL agent 
to explore new solutions 𝑥′ that are better than the best solution found 
so far 𝑥∗. The reward function 𝑟𝐸𝑋 (𝑠𝑡, 𝑠𝑡+1) focuses on exploring new 
best solutions is defined as follows: 

𝑟𝐸𝑋 (𝑠𝑡, 𝑠𝑡+1) =

{

𝛼𝐸𝑋 , if 𝑓 (𝑥′) > 𝑓 (𝑥∗)
0, Otherwise.

(31)

Here, 𝛼𝐸𝑋 is the score given to the DRL agent when the taken action 
explores a new solution 𝑥′, which is better than the best solution so 
far, 𝑥∗. In our study, the choice of 𝛼𝐸𝑋 is based on the reward function 
proposed in Kallestad et al. (2023) and Reijnen et al. (2024), where a 
score of 5 is given to the DRL agent when the action taken explores a 
new solution that is better than the best solution found so far. The 𝑟𝐸𝑋
reward function operates similarly but is slightly modified compared 
to 𝑅𝑃𝑀𝑡 , which showed promising results (Kallestad et al., 2023) but 
exhibited instability when compared to the ALNS scoring system in 
their DRLH framework. However, the observations in Section 5 show 
the 𝑟𝐸𝑋 reward function works stably and is suitable for our DRL-LSH 
framework. Moreover, we also consider another reward function, 𝑟𝐼𝑀 , 
which utilizes the objective value of the best solution achieved by a 
metaheuristic to assess and reward the DRL agent after it takes an 
action. This guides the DRL agent to improve the quality of the current 
solution by competing with the performance of the metaheuristic (see 
Section 5.3.5).
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4.2. Training DRL-LSH

The training phase of DRL-LSH is presented in Algorithm 1. During 
training, for each step, the algorithm selects a problem instance and 
uses action 0 to generate a feasible solution denoted as 𝑥 (Lines 5–6). 
Simultaneously, the best solution 𝑥∗, the initial state 𝑠0, and the solu-
tion pool 𝑃  — which will later store high-quality solutions during the 
path-relinking process — are initialized (Lines 7–9). At each time step, 
the Deep Reinforcement Learning (DRL) agent relies on the current 
state 𝑠𝑡 and policy 𝜋𝜃 to select action 𝑎𝑡 (Line 11). Subsequently, the 
algorithm applies the heuristic operator corresponding to the selected 
action 𝑎𝑡 on the current solution 𝑥, generating a new solution denoted 
as 𝑥′, and records the reward function value 𝑟𝑡 (Lines 12–13). Then, 
the newly generated solution is added to the solution pool 𝑃 , if it 
satisfies the condition: 𝑓 (𝑥′) > (1 − 𝜇)𝑓 (𝑥∗), where 𝜇 represents the 
diversification coefficient (Lines 14–15).

Algorithm 1 DRL-LSH - Training
1: Input: number of training steps, 𝑀 ;
2: Time horizon, 𝑖𝑚𝑎𝑥
3: 𝑠𝑡𝑒𝑝 = 0;
4: while 𝑠𝑡𝑒𝑝 < 𝑀 do
5:  Initialize a problem instance; 
6:  Create a feasible solution, 𝑥; 
7:  Initialize best solution, 𝑥∗ , 𝑓 (𝑥∗) ← 𝑥, 𝑓 (𝑥); 
8:  Initialize a random initial state 𝑠0
9:  Initialize pool P for path-relinking 
10:  for 𝑖 = 0 to 𝑖𝑚𝑎𝑥 do
11:  𝑎𝑡 ← action given by policy 𝜋𝜃 based on state 𝑠𝑡; 
12:  Take action 𝑎𝑡; 
13:  Observe reward 𝑟𝑡 and new solution 𝑥′ ; 
14:  if 𝑓 (𝑥′ ) > (1 − 𝜇)𝑓 (𝑥∗) then 
15:  Add 𝑥′  to 𝑃 ; 
16:  end if
17:  if action 𝑎𝑡 create a new solution then 
18:  𝑥, 𝑓 (𝑥) ← 𝑥′ , 𝑓 (𝑥′ ); 
19:  end if
20:  if 𝑓 (𝑥′ ) > 𝑓 (𝑥∗) then 
21:  𝑥∗ , 𝑓 (𝑥∗) ← 𝑥′ , 𝑓 (𝑥′ ); 
22:  end if
23:  𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1
24:  Add (𝑠𝑡 , 𝑎𝑡 , 𝜋𝜃 (𝑎𝑡|𝑠𝑡), 𝑉𝜙(𝑠𝑡), 𝑟𝑡) to memory H
25:  Update new state 𝑠𝑡+1
26:  end for
27:  Update policy 𝜋𝜃
28: end while

If the newly obtained solution 𝑥′ surpasses the current best solution 
𝑥∗, it becomes the new best solution for the subsequent iterations 
(Lines 20–21). At the end of each time step, all information related 
to the current state 𝑠𝑡, the taken action 𝑎𝑡, the action probability 
distribution 𝜋𝜃(𝑎𝑡|𝑠𝑡), and the value associated with the state 𝑉𝜙(𝑠𝑡)
(where 𝜙 represents the parameters of the critic network) are stored 
in the memory buffer H. Additionally, the new state 𝑠𝑡+1 is updated 
based on the progress of the search procedure (Lines 24–25). Every 𝑖max
iterations, the algorithm samples mini-batches from the memory buffer 
H to perform updates on the policy 𝜋𝜃 (Line 27).

4.3. Learning algorithm

In this study, we utilize Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for updating the weight 𝜃 of policy network 𝜋𝜃
of Algorithm 1. PPO is a widely applied and efficient policy gra-
dient algorithm employed in both continuous and discrete environ-
ments (Kallestad et al., 2023; Reijnen et al., 2024). PPO focuses on 
maximizing the policy improvement while mitigating the risk of per-
formance collapse through controlled policy updates using a ‘‘clipped’’ 
surrogate objective that penalizes changes in the policy when the 
new policy deviates too far from the old one, based on a clipping 
parameter. The implementation of the Proximal Policy Optimization 
(PPO) algorithm is outlined in the supplementary materials (Part C). 
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The input to the DRL-LSH algorithm is the state 𝑠 and its output is a 
probability distribution over actions. Due to the adoption of a multi-
discrete action space in our DRL-LSH algorithm, the output layers are 
fully connected and employ a softmax activation function. This function 
generates a probability distribution over available actions as opposed 
to a single output, effectively determining the policy distribution. PPO 
is a type of actor–critic algorithm that utilizes two neural networks: a 
policy network and a critic network. The policy network acts as the 
actor that proposes a set of possible actions given a state. The critic 
network estimates the value function, which evaluates the action taken 
by the actor based on the given policy. The loss function of the policy 
network, with parameters 𝜃, in the PPO objective function is defined 
below: 
𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ê𝑡

[

min(𝜌𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)
]

(32)

where 𝜌𝑡(𝜃) is the probability ratio of taking actions under the new pol-
icy compared to the old policy and 𝐴̂𝑡 is an estimator of the advantage 
function at timestep 𝑡: 

𝜌𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)

(33)

𝐴̂𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 +⋯ +⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1 (34)

where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1 − 𝑉 (𝑠𝑡)) with 𝑟𝑡 is reward and 𝑉 (𝑠𝑡) is the 
value at state 𝑠𝑡 and 𝑡 specifies the time index in [0, 𝑇 ], within a given 
length-𝑇  trajectory segment. The second term in the loss function, 
𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃), 1−𝜖, 1+𝜖)𝐴̂𝑡, modifies the surrogate objective by clipping the 
probability ratio. The 𝜖 is a hyperparameter. This adjustment eliminates 
the incentive for pushing 𝜌𝑡 beyond the interval [1−𝜖, 1+𝜖]. The clipped 
objective is subsequently compared with the unclipped objective to 
choose the lesser value. This strategy ensures that overly substantial 
policy updates are avoided during the agent’s training process. 𝛾 is 
the discount factor while 𝜆 is a smoothing parameter for reducing the 
variance in training, offering stability. To account for multiple discrete 
actions, the policy loss is calculated separately for each action and 
summed to obtain a single scalar loss value. The clipping function is 
applied independently for each action. Furthermore, an entropy bonus, 
denoted as 𝐸[𝜋𝜃(𝑠𝑡)], with a coefficient of 𝑐𝐸 , is incorporated into 
the objective function of the policy network to encourage adequate 
exploration.

The critic loss of critic network, with parameters 𝛷, is given by 
the squared error between the predicted value 𝑉𝜙(𝑠𝑡) and the actual 
discounted sum of rewards obtained from the current state 𝑅̂𝑡: 
𝐿𝑉 𝐹 (𝜙) = Ê𝑡

[

(𝑉𝜙(𝑠𝑡) − 𝑅̂𝑡)2
]

(35)

5. Computational experiments

In this section, we provide a comprehensive computational exper-
iment designed to assess the proposed solution method. We delve 
into the benchmark instances, reference algorithms, experiment set-
tings, and present the experimental results. Furthermore, we conduct 
a comparative analysis to benchmark the performance of DRL-LSH 
in relation to hyperheuristic and metaheuristic methods. Additionally, 
the convergence, scalability, and learned policies of DRL-LSH will be 
further analyzed.

5.1. Benchmark instances

The proposed HVRP-MTWSTT builds upon the deterministic prob-
lem introduced by Gunawan, Nguyen , Yu et al. (2023). Consequently, 
the benchmark instances have also been derived from this deterministic 
version. These instances were originally adapted from the benchmark 
instance sets created by Homberger and Gehring (1999). An instance 
refers to a specific configuration of the problem, characterized by a 
defined set of locations, demands, vehicle capacities, costs, income, col-
lection periods, service times, and time windows. From the benchmark 
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Table 2
Summary of test datasets used in experiment.
 Datasets 𝑁1 𝑁2 𝑉1 𝑉2 No. of instances 
 Instance20 10 10 5 5 200  
 Instance50 25 25 13 13 200  
 Instance100 50 50 25 25 200  

Table 3
Summary characteristic of instances for the scalability experiment.
 No Instance 𝑁1 𝑁2 𝑉1 𝑉2  
 1 S–8 4 4 4 4  
 2 S–12 6 6 3 3  
 3 S–16 8 8 4 4  
 4 S–20 10 10 5 5  
 5 S–24 12 12 6 6  
 6 S–30 15 15 8 8  
 7 S–40 20 20 10 10 
 8 S–50 25 25 13 13 
 9 S–60 30 30 15 15 
 10 S–70 35 35 18 18 
 11 S–80 40 40 20 20 
 12 S–90 45 45 23 23 
 13 S–100 50 50 25 25 
 14 S–110 55 55 28 28 

instances of the deterministic problem, we selected three instances, 
each representing different problem sizes with 20, 50, and 100 nodes. 
These are referred to as ‘‘selected instances’’. For each selected instance, 
we generated 400 ‘‘synthetic instances’’ by introducing randomized 
variations in e-bins, customer coordination points, and time windows. 
50% of these 400 synthetic instances were used for training, while the 
remaining 50% were reserved for testing the model. The training and 
testing ratio were chosen based on the methodology described by Rei-
jnen et al. (2024). The introduction of randomness into the stochastic 
travel times occurs during the computational process of the problem 
instance. The main characteristics of test instances are summarized in 
Table  2. 𝑁1 and 𝑁2 denote the number of customers and e-bins in the 
graph, while 𝑉1 and 𝑉2 represent the number of vehicle types I and II 
in the fleet, respectively. The specifications corresponding to vehicle 
type I include a capacity 𝑞1 of 500, an operating cost 𝑐1 of 2, a penalty 
cost 𝜙1 of 7, and an idle cost 𝜓1 of 3, whereas for vehicle type II, the 
corresponding values are 100, 1, 2, and 5, respectively. We consider a 
4-day collection period (|𝐾|) in all benchmark instances. The instances 
will be provided upon request.

For the scalability experiment (Section 5.3.3), we designed 14 ad-
ditional instances, each featuring variations in the number of nodes, 
vehicles, e-bins, customer coordination points, and time windows. The 
key characteristics of the instances are outlined in Table  3. The re-
maining parameters, such as operating cost, penalty cost, idle cost 
of vehicles, and the horizon length of the collection period, remain 
consistent with those of the instances in the training dataset. Further 
details on the experimental settings are presented in the supplementary 
materials (Part D).

5.2. Reference algorithms

We compared the proposed approach against metaheuristic and 
hyperheuristic algorithms (called as ‘‘reference algorithms’’), which are 
established methods commonly used as benchmarks to evaluate new 
approaches. These algorithms serve as a baseline for assessing the 
performance of the proposed method, particularly in terms of solution 
quality and computational efficiency. Specifically, we implemented five 
reference algorithms to solve the HVRP-MTWSTT: three metaheuristic 
methods and two hyperheuristic methods. These methods serve as 
frameworks for managing the low-level heuristics. In the context of 
RL, the heuristics are considered actions to be selected and performed 
within the DRL-LSH framework. We chose not to use end-to-end DRL 
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approaches as reference algorithms, as many of these methods face 
challenges with high-dimensional combinatorial problems, have been 
tested only on relatively small scales, or are not adaptable to our spe-
cific problem. Consequently, they are not applicable to our experiments 
and do not offer a suitable evaluation for DRL-LSH.

The first reference algorithm is the Greedy Randomized Adaptive 
Search Procedure (GRASP) complemented with path-relinking (GRASP-
PR), as proposed in Gunawan, Nguyen, Nguyen et al. (2023) for solving 
the deterministic version of HVRP-MTWSTT. While the original algo-
rithm is not designed for stochastic problems, we organize the actions 
used for DRL-LSH in a similar manner to GRASP-PR for the purpose 
of comparison. The second reference algorithm is GRASP tuned by Q-
learning (Nguyen et al., 2024), where the state–action value is used 
to determine the order of local search operators within the GRASP 
framework. The third reference algorithm is the integration of GRASP 
with Monte Carlo simulation (SimGRASP) (Festa et al., 2018), designed 
to solve VRP with stochastic demand using Monte Carlo simulation 
to evaluate the local optimum found by GRASP. The fourth refer-
ence algorithm is the Look-ahead hyper-heuristic (HH-probe) (Meignan 
et al., 2016), which employs a pre-selection phase (probe) to assess the 
potential costs that different local search operators can achieve within 
the same probe time. The final reference algorithm employed is the 
Q-learning based hyper-heuristic (HH-Q) (Nguyen et al., 2024), which 
leverages information from a trained Q-table to formulate the stochastic 
policy with biased randomized action selection to choose a low-level 
heuristic. As SimGRASP is designed to address the VRP with stochastic 
demand, and HH-Probe is evaluated on the classic VRP, we adapt these 
concepts to solve the HVRP-MTWSTT using the operators that serve as 
actions for DRL-LSH.

5.3. Experimental results

Due to the stochastic nature of DRL-LSH, we conducted training 
by using four different random seeds. In this process, we employed 
three separate algorithms: DRL-LSH20, DRL-LSH50, and DRL-LSH100, 
each trained on a set with different instance sizes: 20, 50, and 100. 
Each algorithm underwent training with a diverse set of 200 problem 
instances. Across all three instance groups, the DRL agent demonstrates 
convergence after 2.4 million learning steps. In terms of training time, 
DRL-LSH20, DRL-LSH50, and DRL-LSH100 took 8.47 h, 12.7 h, and 
15 h, respectively.

Fig.  4 illustrates the rolling mean of training rewards over these 
2.4 million steps, with varying seeds. The reward at each training 
step indicates the algorithm’s ability to explore new best solutions. 
Therefore, a higher reward indicates a greater number of times where 
the algorithm explores new best solutions. A stable rolling mean reward 
at a high level indicates that the trained policy has the capability to 
explore more new best solutions (improved intensification) compared 
to the untrained policy. As observed in the figure, the convergence 
patterns of the DRL agent remained consistent among the three instance 
groups. In the initial stage, DRL agents experience rapid improvements 
before stabilizing at a high level of reward. It can be seen that the 
algorithms trained on larger instances have better rewards per episode 
than those trained on smaller instances. This can be attributed to the 
fact that larger instances have considerably larger solution spaces than 
the smaller ones. Therefore, within 6000 actions, DRL-LSH20 reaches 
its limit in the number of times it can explore new best solutions.

Additionally, the rewards per episode for DRL-LSH50 and DRL-
LSH100 happen to be close. With 6000 search actions in the larger 
solution spaces of instance50 and instance100, DRL-LSH50 and DRL-
LSH100 can still achieve higher rewards. However, since the number 
of search actions is capped at 6000, their average rewards converge 
to similar levels. We predict that the gap in rewards between DRL-
LSH50 and DRL-LSH100 will be larger if more actions are performed. 
Ultimately, all three models converged around a rolling mean reward 
range from 95 to 115.



D.V.A. Nguyen et al. European Journal of Operational Research xxx (xxxx) xxx 
Fig. 4. Training reward over 2.4 million steps on three groups of instances.
Fig. 5. Performance of DRL-LSH in solving 600 different instances.
The trained algorithm undergoes a comprehensive evaluation
through a series of experiments, assessing performance and scalability 
in comparison to various reference algorithms on the HVRP-MTWSTT. 
Initially, we deployed the trained algorithms to address three groups of 
test instances with problem sizes of 20, 50, and 100, and subsequently, 
the performance of DRL-LSH is compared with the performance of the 
reference algorithms in Section 5.3.1. In Section 5.3.2, we focus on 
presenting information regarding the convergence speed of DRL-LSH in 
comparison with other reference algorithms. To evaluate the ability of 
DRL-LSH in solving previously unseen instances with additional nodes 
and vehicles, we conduct a scalability experiment wherein DRL-LSH is 
employed to address 14 different instances with sizes ranging from 8 to 
110 nodes (Section 5.3.3). Section 5.3.4 provides detailed insights into 
the learned policies and state–action t-SNE visualization of DRL-LSH. 
We also present an experiment involving another reward function in 
Section 5.3.5, alongside with a statistical test based on non-parametric 
tests and post-hoc analysis.

5.3.1. Experiment on test instances
Each method was evaluated on three sets of instances with problem 

sizes of 20, 50, and 100 nodes, respectively, each set containing 200 
instances. Table  4 indicates the performance of different methods across 
three instance sets, including the minimum profit (Min), maximum 
profit (Max), average profit (Avg. profit), standard deviation (Std), 
the number of instances where the method achieves the best solution 
(Nr. Best), and computational time (CPU) when solving 200 problem 
instances in each instance set. The performance gaps of GRASP-Q, 
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SimGRASP, HH-Q, HH-Probe, and DRL-LSH in relation to GRASP-PR 
when solving 600 different problem instances are indicated in Fig.  5.

For small-sized instances (Instance20), the performances of Sim-
GRASP, HH-Q, HH-Probe, and DRL-LSH are relatively similar, with 
all these methods achieving approximately a 20% improvement in 
average profit over GRASP-PR. The competitive performance of these 
methods at this scale suggests that AOS methods, such as HH-Q, HH-
Probe, and DRL-LSH, do not yet fully demonstrate their advantage over 
traditional metaheuristic methods in smaller problem spaces. Among 
the traditional metaheuristics, GRASP-Q shows a modest improvement 
of 6%–10% over GRASP-PR due to its adaptive ordering of operators, 
but it still lags behind the AOS-based methods. SimGRASP, originally 
designed for stochastic VRP, performs fairly well in small-sized in-
stances due to its sample-based evaluation strategy. However, as the 
solution space expands, the limitations of its sample-based approach 
become evident.

As the problem size increases to medium-sized instances
(Instance50), a clear performance gap emerges between DRL-LSH and 
other methods. DRL-LSH outperforms the other approaches, achieving 
the highest average profit of −512.287, representing an 11.24% im-
provement over HH-Probe, the second-best performing method. The 
widening performance gap can be attributed to the ability of DRL-
LSH to dynamically select appropriate low-level heuristics based on the 
state of the problem, unlike traditional metaheuristic methods, which 
rely on a fixed sequence of operator applications. The results indicate 
that GRASP-PR and GRASP-Q, both of which apply a rigid sequence 
of operators, are less effective in handling the increased complexity of 
medium-sized instances, resulting in significantly lower performance 
compared to AOS methods.
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Table 4
Performance comparison of different methods for solving 600 instances of varying sizes.
 Instance sets Metric GRASP-PR GRASP-Q SimGRASP HH-Q HH-Probe DRL-LSH  
 

Instance20

Min −93.81 −69.57 145.46 −156.85 80.49 −36.44  
 Max 1648.96 1620.94 1664.11 1611.74 1897.21 1825.1  
 Avg. profit 751.01 802.81 970.23 940.11 984.48 981.84  
 Std 322.59 306.72 284.87 274.09 337.89 311.61  
 Nr. Best 7 7 37 29 56 64  
 CPU (s) 6.03 6.77 20.8 5.73 8.51 8.97  
 

Instance50

Min −10221.77 −6455.03 −8449.85 −5976.06 −14129.3 −2741.61  
 Max 1033.43 1764.32 1658.34 1799.17 1740.3 2204.46  
 Avg. profit −2162.068 −1935.232 −1275.51 −830.49 −755.156 −512.287  
 Std 1614.89 1606.53 1308.22 1350.35 1719.94 790.40  
 Nr. Best 7 13 21 46 66 47  
 CPU (s) 21.66 20.8 26.05 18.09 17.54 18.23  
 

Instance100

Min −42845.88 −38471.87 −46470.4 −30375.6 −71853.7 −22684.2 
 Max −8356.22 −6758.12 −2469.33 −3923.17 −314.55 −1355.98  
 Avg. profit −20979.24 −19562.53 −18342.4 −14554.8 −11339.9 −8587.88  
 Std 6505.795 6149.1705 6445.754 5448.069 9445.354 4430.528  
 Nr. Best 0 0 3 13 80 104  
 CPU (s) 82.7 53.64 91.48 74.2 72.74 80.61  
For large-sized instances (Instance100), DRL-LSH demonstrates su-
perior scalability and performance, achieving an average profit of 
−8587.88, which is 13.11% better than HH-Probe, the next best-
performing method. This significant improvement in performance sup-
ports findings in the literature (Kallestad et al., 2023), which highlight 
that DRL-based approaches tend to excel as the problem size increases 
due to their ability to learn effective policies for operator selection in 
complex and high-dimensional solution spaces. Traditional metaheuris-
tic methods, particularly GRASP-PR and GRASP-Q, show the weakest 
performance, with average profits of −20979.24 and −19562.53, 
respectively. SimGRASP, while competitive in smaller instances, fails 
to scale effectively due to the limitations of its sample-based evaluation 
strategy, yielding an average profit of −18342.4.

In terms of the number of best solutions, DRL-LSH consistently 
achieves the highest number across all instance sizes. In small-sized 
instances, it records 64 best solutions, outperforming HH-Probe (56 
instances) and SimGRASP (37 instances). As the problem size increases, 
the advantage of DRL-LSH becomes more pronounced, achieving 47 
best solutions in medium-sized instances and 104 best solutions in 
large-sized instances, clearly surpassing all other methods. These results 
highlight the robustness of DRL-LSH in providing high-quality solutions 
across varying problem sizes.

Regarding computational time, DRL-LSH exhibits slightly longer 
runtime compared to other methods, particularly HH-Q and HH-Probe. 
The computational time for DRL-LSH increases from 8.97 s for small-
sized instances to 18.23 s and 80.61 s for medium- and large-sized 
instances, respectively. The slightly higher computational time of DRL-
LSH can be attributed to the varying time complexities of the heuristic 
operators and the first-improvement local search procedure it employs. 
HH-Q and HH-Probe, which also employ AOS strategies, show slightly 
lower computational times in medium- and large-sized instances, but at 
the cost of reduced solution quality compared to DRL-LSH. SimGRASP 
exhibits the longest runtime among the methods due to its reliance on 
Monte Carlo sampling, which increases computational overhead.

The difference in computational time among the methods is con-
sistent with findings from previous studies (Kallestad et al., 2023; 
Reijnen et al., 2024), where DRL-based heuristics, such as DRLH and 
DRL-ALNS, demonstrated longer computational times compared to tra-
ditional ALNS methods. However, these studies also emphasize that the 
increase in computational time is justified by the significant improve-
ment in solution quality offered by DRL-based methods. Similarly, in 
this study, while DRL-LSH incurs slightly higher computational time, it 
provides consistently better solutions, particularly for larger instances 
where solution quality is critical.
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5.3.2. Convergence speed
In this section, we present the convergence speed and performance 

characteristics. The convergence patterns, spanning over 6000 actions 
across three problem sizes, are illustrated in Fig.  6. Notably, DRL-
LSH consistently exhibits superior performance among the considered 
methods across all problem instance sizes. For small-sized instances, 
DRL-LSH initially progresses at a slower pace compared to SimGRASP 
and HH-Probe before eventually achieving higher solution quality and 
gradually improving it. When faced with medium-sized and large-sized 
problems, DRL-LSH finds high-quality solutions quickly and then looks 
for ways to improve them before stabilizing. Due to DRL-LSH being 
trained to find new best solutions, its convergence line exhibits a small 
slope after reaching a good solution, as opposed to a straight line. This 
indicates its ability to continuously explore new best solutions as the 
number of actions increases, rather than converging prematurely to a 
local optimum.

5.3.3. Experiment on scalability
In real-world applications, the algorithm generality is important. 

Generality refers to the ability of trained algorithms to perform ef-
fectively beyond the specific instances in which they were trained. 
Essentially, a generic model can extrapolate the patterns or relation-
ships it has learned from its training data to new and unseen data. 
Deploying a DRL-based algorithm on events or additional information 
that did not occur during the training phase can result in poor perfor-
mance (Zhang et al., 2022). In our method, DRL-LSH is trained on a 
single-sized problem instance, which makes it unaware of newly added 
nodes and vehicles. Nevertheless, we aim to observe the performance 
behavior of DRL-LSH when it encounters instances with significantly 
different characteristics compared to those used for training. Conse-
quently, we use a set of test instances with varying numbers of nodes, 
ranging from 8 to 110 nodes. DRL-LSH20, 50, and 100 are used for 
instances with a number of nodes ranging from 8 to 24, 30 to 70, and 
80 to 110, respectively. The idea of using instance size specific models 
comes from the existing relevant studies (Reijnen et al., 2024; Zhang 
et al., 2022).

The average solution quality and computational time, based on 10 
runs of all methods on these 14 test instances, are reported in Table 
5. It can be observed that for problems with sizes ranging from 8 
to 16 nodes, SimGRASP performs the best, as Monte Carlo sampling 
can explore good solutions in a relatively small solution space. As the 
problem size increases to the range of 20 to 40 nodes, hyperheuristic 
methods like HH-Q and HH-Probe demonstrate their effectiveness. In 
these instances, DRL-LSH achieves competitive results but does not 
outperform the reference algorithms. However, when the problem size 
exceeds 50 nodes, DRL-LSH consistently performs the best among the 
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Fig. 6. Rolling average of the objective value after each action for all methods and 
each problem size.

methods, and the performance gap between DRL-LSH and its competi-
tors widens as the problem size increases. The difference is attributed 
to the learning ability of DRL, which leverages information about the 
problem instance to select an appropriate sequence of heuristics. In 
contrast, other methods either heavily depend on domain knowledge 
or capture only partial information about the problem instance, which 
can become less effective when the structure of the problem instance 
changes significantly. This observation suggests that DRL-LSH exhibits 
strong performance even in instances for which it has no prior experi-
ence and particularly well-suited for deployment in large-scale problem 
instances.

5.3.4. Trained policies of DRL-LSH
The interpretability of complex algorithms trained through a neural 

network is often considered challenging.  In the context of DRL-LSH, 
interpretability refers to the ability to understand, explain, and evaluate 
the decision-making process of the model, particularly how it selects 
local search heuristics and the rationale behind those choices during the 
optimization process. With DRL-LSH, heuristic operators are manually 
designed which enhance the interpretability of this algorithm. To gain 
a deeper understanding of the trained policies, we conducted experi-
ments to investigate the behavior of the trained algorithms on the test 
instances. Specifically, we collected action distributions at every 300 
time steps out of a total of 6000 steps for each DRL-LSH algorithm. The 
proportions of actions for the three DRL-LSH algorithms are presented 
in Fig.  7. It is evident that Action 12 — path-relinking (PR) is the 
most frequently chosen among the considered heuristics, followed by 
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Action 0, which involves restarting the search process at a new point 
in the search space by creating a new solution. This observation is 
reasonable because, among intensification operators, PR is the only 
operator based on a population search strategy, which helps explore 
trajectories connecting elite/high-quality solutions.

Due to its ability to explore multiple elite neighbors, PR outperforms 
other considered improvement heuristics when applied once. On the 
other hand, Action 0 – creating a new solution – is the only diversifica-
tion operator in our DRL-LSH algorithms, serving as a means to escape 
local optima. The learned policies of DRL-LSH on problem size 20 and 
100 are relatively similar, with path-relinking dominating among other 
actions, occurring with a frequency of around 70% to 80% of total 
actions taken. In the case of problem size 50, while path-relinking 
still has the highest proportion, it accounts for approximately 30% 
to 40% of total actions taken. Additionally, the proportions of other 
actions, except path-relinking, are roughly similar, each comprising 
about 6% of the total actions. Another observation is that in the DRL-
LSH trained with problem size 20 instances, where the trained instance 
size is small, Actions 2 - intra-relocation and 8 - or-opt (inter-route) are 
taken more frequently than the rest, whereas in problem size 100, the 
focus centers on Actions 12 and 0 to optimize the search within 6000 
actions. Additionally, we can observe that actions based on intra-route 
neighborhood local search are not taken frequently compared to other 
actions. This can be attributed to the fact that local searches based on 
intra-moves like 2-opt (in Action 5) and Intra-swap (in Action 3) are not 
particularly effective in improving solutions under the time windows 
constraints of HVRP-MTWSTT.

To better reveal the existing patterns between the states and their 
corresponding actions, Fig.  8 presents the t-SNE (t-distributed Stochas-
tic Neighbor Embedding) visualization for over 20000 states in the 
search process and their associated actions within the problem size 50. 
It is evident that there are numerous elongated data points, primarily 
due to our state features comprising three sequential attributes out of 
a total of eight: the current iteration count, the number of consecu-
tive iterations without reinitialization the search, and the number of 
consecutive iterations without improving the best-found solution. Each 
elongated cluster signifies a search process that combines a sequence 
of different operators. It is notable that the starting point of each 
elongated cluster corresponds to an action 0 signifying the initiation of 
a new solution and the commencement of a new search sequence. On 
the right-hand side of the t-SNE visualization, we observe combinations 
of Actions 0 and 12 - path-relinking, which can represent either a 
sequence of Action 0 followed by a series of path-relinking procedures 
or consecutive pairs of Actions 0 and 12. The t-SNE visualization clearly 
illustrates that the DRL agent employs a variety of operator sequences 
to search for improved solutions, highlighting the adaptability of its 
framework compared to fixed strategies in the search process.

Based on the above experiment, we can gain insights into the 
behavior of the DRL-LSH and identify patterns that exist between the 
states of the search and the corresponding actions at a certain level. 
Decisions produced by end-to-end DRL methods are often challenging 
to interpret, and there are limitations in explaining their motivation. 
DRL-LSH, however, can provide an explainable approach at a cer-
tain level, enabling decision-makers to better understand and accept 
recommendations in real-world applications.

5.3.5. Experiment on a different reward function and statistical test
Alternative reward function: As discussed in Section 4.1, a well-

designed reward function needs to ensure that the DRL agent learns the 
desired behavior effectively. The reward function should align with the 
ultimate objective of the problem and avoid reward hacking behavior. 
In this section, we conduct an experiment with an alternative reward 
function that directly focuses on improving the objective function of 
the solution found, guided by a metaheuristic, instead of encouraging 
exploration of new solutions. At each training step, we import the 
objective value of the solution of this problem instance solved by 
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Table 5
Results of scalability experiment.
 No Instance GRASP-PR GRASP-Q SimGRASP HHQ HHProbe DRL-LSH

Avg. 10 CPU (s) Avg. 10 CPU (s) Avg. 10 CPU (s) Avg. 10 CPU (s) Avg. 10 CPU (s) Avg. 10 CPU (s) 
1 S–8 579.16 1.72 628.41 1.82 680.06 3.33 633.90 2.62 662.15 4.38 628.91 5.16  
2 S–12 120.51 2.99 157.96 3.09 325.07 5.57 192.73 3.68 295.09 4.70 240.50 6.45  
3 S–16 819.35 3.75 863.70 3.90 1099.55 6.35 856.17 4.00 999.24 5.65 939.91 7.55  
4 S–20 542.06 5.12 540.31 5.47 791.14 8.59 729.77 5.53 845.36 6.45 547.10 8.68  
5 S–24 2004.01 6.85 2000.28 6.82 2171.34 10.98 2098.93 6.39 2349.39 10.05 2270.52 9.96  
6 S–30 619.73 10.12 718.93 9.96 770.70 19.96 970.00 8.83 519.87 10.98 734.48 13.22  
7 S–40 −201.27 15.54 −295.29 13.08 409.94 20.14 459.41 11.56 629.12 13.23 553.39 12.21  
8 S–50 −2613.90 23.86 −2529.79 17.39 −1065.21 25.16 −1023.10 15.37 −398.97 15.86 −387.21 17.54  
9 S–60 −4270.13 36.23 −4795.87 30.31 −3682.71 33.56 −1830.33 20.81 −2489.74 18.29 −1000.17 22.23  
10 S–70 −11886.78 45.68 −10980.31 42.97 −8295.74 40.91 −8702.46 24.16 −4873.71 21.97 −3055.11 43.54  
11 S–80 −16401.37 50.97 −17159.66 42.96 −12024.53 59.31 −10048.22 32.98 −5806.80 32.77 −5117.24 45.14  
12 S–90 −16077.14 64.81 −14949.01 48.77 −14958.22 85.76 −9656.27 41.88 −13290.74 46.94 −7596.42 57.14  
13 S–100 −19455.57 72.75 −19064.94 53.75 −13907.32 91.72 −13533.61 47.02 −14697.49 38.80 −9156.77 60.92  
14 S–110 −31065.17 75.52 −28593.94 85.30 −25965.34 107.73 −22633.78 58.30 −22264.36 40.70 −17293.82 70.74  
Fig. 7. Proportion of actions taken every 300 search steps for each problem size.
Fig. 8. Two-dimensional t-SNE visualization of 20,000 search states.
b
i
h
s
s
h

𝑟

a
t

RASP-PR, denoted as 𝑓 (𝑥∗)𝑀 . We use this objective function as a 
eedback to the DRL agents about their performance.
In each time step, the DRL agent receives a reward upon reach-

ng a predefined threshold for the first time in this training episode, 
.g., 50%, 70%, or 90% of the metaheuristic’s performance. With this 
eward strategy, there may be one action that makes the newly found 
olutions surpass multiple thresholds, and in this case, the DRL agent 
ill receive all accumulated rewards in this path in one action. To 
revent immediate large rewards, we safely clip rewards at a maximum 
f 7 units, defined as 𝑟𝐼𝑀 (𝑠𝑡, 𝑠𝑡+1) = min(𝑟(𝑠𝑡, 𝑠𝑡+1), 7). When the DRL 
gent’s action explores a new solution outperforming the solution 
chieved by the metaheuristic, it receives a reward 𝛼𝐼𝑀  for each 
mprovement. We additionally introduce a parameter, i.e., 𝜎, to scale 
he reward to an acceptable range within our reward function. The idea 
(
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ehind this reward function (Eq. (36)) is to encourage the DRL agent to 
mitate the behavior of an expert in solving a problem. This approach 
as the potential to make DRL-LSH converge quicker to a high-quality 
olution than the previous function. Furthermore, this reward function 
ynchronizes the DRL agent’s goal of finding a better solution than a 
igh-quality one rather than solely improving the current solution. 

𝐼𝑀 (𝑠𝑡, 𝑠𝑡+1) =

⎧

⎪

⎨

⎪

⎩

𝛼𝐼𝑀 , if 𝑓 (𝑥′) reaches threshold
𝛼𝐼𝑀 × 𝜎𝑤, if 𝑓 (𝑥′) > 𝑓 (𝑥∗)𝑀
0, Otherwise.

(36)

Here, 𝑓 (𝑥′) represents the solution obtained after DRL takes an 
ction 𝑎𝑡 at time step 𝑡, while 𝑓 (𝑥∗)𝑀  denotes the solution attained 
hrough a metaheuristic (i.e. GRASP-PR). Furthermore, the term 𝜎 ∈
0, 1) is introduced into the reward when the solution found by DRL-LSH 



D.V.A. Nguyen et al. European Journal of Operational Research xxx (xxxx) xxx 
Table 6
Performance comparison of DRL-LSH algorithms with two different reward functions.
 Datasets DRL-LSH with 𝑟𝐸𝑋 DRL-LSH with 𝑟𝐼𝑀
 Obj. val CPU (s) Obj. val CPU (s) 
 Instance20 981.84 8.97 1108.65 13.1  
 Instance50 −512.29 18.23 −820.18 10.68  
 Instance100 −8587.88 80.61 −9861.74 176  

surpasses the performance of the metaheuristic for 𝑤 times. For this 
reward function, we aim to encourage the DRL agent to reach different 
thresholds during its action trajectory. Since there are many thresholds 
throughout this process, only a small reward is needed to guide the 
DRL agent’s behavior and avoid over-optimism in the actions taken. 
Therefore, we decide to set 𝛼𝐼𝑀 = 1.

The threshold for rewarding the DRL agent is designed in a manner 
such that when the current solution on hand is poor, the next action 
needs to significantly improve solution quality to receive a reward. 
Conversely, when the current solution on hand is of high quality, an 
action that makes only a small improvement will still be rewarded by 
the agent. The details about the threshold setting are presented in the 
supplementary materials (Part E).

The performance comparison of DRL-LSH algorithms using two 
different reward functions is presented in Table  6. An intriguing obser-
vation is that the DRL-LSH algorithm employing the reward function 
𝑟𝐼𝑀  outperforms the one using 𝑟𝐸𝑋 for problem size 20 in terms 
of solution quality. However, for larger instance group with 50 and 
100 nodes, the DRL-LSH algorithm with 𝑟𝐼𝑀  performs slightly worse 
than when using the 𝑟𝐸𝑋 reward function. This observation may be 
attributed to the fact that the DRL-LSH algorithm with 𝑟𝐼𝑀  is learned 
from the behavior of handcrafted metaheuristics, which exhibit rela-
tively good performance in small instances. Nevertheless, the objective 
values of these metaheuristics do not compete favorably with those of 
the DRL-LSH methods in medium and large instances.

Statistical test:  To evaluate whether the reported performance dif-
ferences among different methods on the test instances are statistically 
significant, we performed a non-parametric Friedman test followed by 
a Holm post-hoc test. The Friedman test assesses whether there are 
overall performance differences across multiple methods when applied 
to the test instances, without relying on strict assumptions about the 
data distribution. If significant differences are detected, the Holm post-
hoc test is used to compare the methods pairwise while controlling for 
multiple comparisons. This approach ensures that the observed differ-
ences in performance across the test instances are meaningful and not 
due to random variation. The details can be found in the supplementary 
materials (Part F). The average rankings of all algorithms are presented 
in Table  7. The pairwise tests on different problem sizes are depicted 
in Fig.  9.

DRL-LSH significantly outperforms all the competing methods on 
the problem instances with size 100 for a confidence level of 95%. 
However, the ones with the sizes of 50 and 20, the performance 
differences are no longer significant. This observation suggests that 
DRL-LSH with the reward function 𝑟𝐸𝑋 performs better as the problem 
size increases.

5.3.6. Case study
To evaluate the effectiveness of the proposed method in solving 

real-world, large-scale problems and to support the argument that DRL-
LSH is particularly favorable for large-scale applications, we introduce 
a real-world case study of an e-waste collection operation in Singapore. 
Every year, Singapore generates approximately 60,000 tonnes of e-
waste, with the rate of generation increasing annually (NEA, 2024). 
In 2021, the National Environment Agency (NEA) introduced a reg-
ulated e-waste management system to ensure the proper collection 
and handling of e-waste. The NEA appointed a government-funded 
corporation as the Producer Responsibility Scheme (PRS) Operator for a 
14 
contract with a period of five years to manage e-waste collection across 
Singapore for proper treatment and recycling.

Under this scheme, PRS distributed more than 550 e-bins across Sin-
gapore as public drop-off points. These e-bins are equipped with sensors 
that send information about the trash levels to the system, allowing the 
operator to determine which e-bins need to be collected the next day. 
The PRS depot is located in the Tuas district, in the western region 
of Singapore. In addition to e-bin collection, PRS also offers doorstep 
collection services, where residents can request PRS staff to come to 
their location to collect e-waste within a specified time window on a 
day they are available (residents can also propose several days with 
different time windows). This can be arranged through an application, 
and a fee is charged based on the volume of e-waste collected. Due to 
varying road widths and e-waste size, PRS employs two types of trucks 
for collection tasks: the heavy-duty truck fleet uses Mercedes-Benz 
Arocs, while the light-duty truck fleet uses Isuzu 𝑁 series vehicles. For 
more details about the described collection scheme, we refer interested 
readers to the PRS and NEA Singapore websites (ALBA, 2022; NEA, 
2024).

In our case study, we randomly selected 250 e-bins across Singapore 
and assigned them to different days within a 4-day collection period. 
The coordinates of the e-bins and the depot are provided by the Sin-
gapore open data portal (data.gov.sg). To simulate customer requests, 
we generated 250 requests based on random zip codes of residents in 
Singapore and assigned them to one or several days within the 4-day 
collection period, with random time windows varying by the day. The 
vehicles’ original volumes are based on the dimensions of light and 
heavy trucks as provided by Aljohani and Thompson (2020). Opera-
tional costs are calculated based on the average income of waste truck 
drivers in Singapore, as provided by the Ministry of Manpower (MOM, 
2024). The dimensions of e-waste items were randomly collected from 
a reseller website and then converted into load units. Penalty and idle 
costs were randomly generated. The distance matrix was calculated 
using the Euclidean method. Fig.  10 illustrates the location distribution 
of e-bins (blue circles) and customer locations (red crosses) in our case 
study. Detailed information about the vehicles and costs is summarized 
in Table  8.

To train DRL-LSH for the case study, we generated a set of 200 
synthetic instances similar to those described in Section 5.1, each with 
250 e-bins and 250 customer requests, but using the cost and collection 
fee data from Table  8. The training rewards over time for DRL-LSH 
on these instances are shown in the supplementary materials (Part 
G). Afterwards, we deployed the trained model to solve the proposed 
case study and compared it with other reference algorithms. Due to 
the randomization in the algorithms, we also deployed all investigated 
methods to solve the case study 10 times, limiting the maximum 
computing time for each method to 5500 s. The operational profit of 
the best route over the 4-day collection period, as found by different 
algorithms, and their respective computing times, are indicated in 
Table  9.

Overall, the performance ranking of the algorithms remains consis-
tent with the results obtained in the test instances featuring 100 e-bins 
and customers. The algorithms employing an adaptive selection opera-
tor continue to outperform those with fixed operators, while DRL-LSH 
confirms its strength in handling large-scale instances, achieving the 
best performance among all considered methods. Notably, SimGRASP 
now performs worse than GRASP-Q, highlighting the diminishing ef-
fectiveness of Monte Carlo sampling for finding good solutions as 
the instance size increases. In contrast, GRASP-Q demonstrates an 
advantage by partially capturing the stochastic environment through 
its Q-table-based tuning of operator sequences.

Closer examination of the results reveals that only HH-Probe and 
DRL-LSH achieve positive operational profits for the collection plan, 
with DRL-LSH yielding significantly higher profits, showing a 78.7% 
improvement over the next-best method. Regarding CPU time, as noted 
previously, the use of a first-improving local search strategy for each 
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Table 7
The methods average rankings.
 GRASP-PR (i) GRASP-Q (ii) SimGRASP(iii) HH-Q (iv) HH-Probe (v) DRL-LSH (vi) 
 Instance20 25.79 23.04 15.45 17.10 15.63 15.23  
 Instance50 26.11 23.06 18.57 15.34 14.41 14.22  
 Instance100 26.35 24.53 22.69 17.18 12.53 8.95  
Fig. 9. Pair-wise tests of performance on different problem size.
Fig. 10. Case study of e-waste collection in Singapore.
Table 8
Summary of Singapore e-waste collection case study.
 Number customers requests 𝑁1 250 Penalty cost of heavy trucks 𝜙1 $8 × 10−2∕time unit  
 Number of e-bins 𝑁2 250 Idle cost of heavy trucks 𝜓1 $4 × 10−2∕time unit  
 Number of heavy trucks 𝑉1 30 Capacity of lightweight trucks 𝑞2 19 m3 ≈ 190 load unit 
 Number of lightweight trucks 𝑉2 30 Operation cost of lightweight trucks 𝑐2 $7 × 10−2∕time unit  
 Capacity of heavy trucks 𝑞1 59𝑚3 ≈ 590 load unit Penalty cost of lightweight trucks 𝜙2 $2 × 10−2∕time unit  
 Operation cost of heavy trucks 𝑐1 $12 × 10−2∕time unit Idle cost of lightweight trucks 𝜓2 $10−2∕time unit  
 Collection fee 𝑝𝑖 ∶ 𝑖 ∈ 𝑁1 $10∕load unit  
problem-dependent heuristic leads to higher computing times for meth-
ods with superior search strategies. Consequently, the fixed-operator 
methods GRASP-PR and GRASP-Q terminated early, completing 6000 
applications of the local search operator before reaching the maximum 
computation time of 5500 s. In contrast, the adaptive operator selection 
methods fully utilized the maximum computation time, demonstrating 
their ability to deploy more effective search strategies and achieve 
superior results.
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6. Conclusion

We study and formulate the e-waste collection problem as the 
Heterogeneous Vehicle Routing Problem with Multiple Time Windows 
and Stochastic Travel Time (HVRP-MTWSTT). HVRP-MTWSTT encom-
passes various real-world constraints, including multiple-period plan-
ning, the integration of fixed drop-off collection points with customer 
on-demand requests within specified time windows, a heterogeneous 
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Table 9
Operational profit of best route found by investigated algorithms and the respective 
computing times.
 Methods Avg. 10 ($) CPU(s)  
 GRASP-PR −12044.29 1973.345 
 GRASP-Q −10677.84 2003.195 
 SimGRASP −10850.39 5500  
 HH-Q −2425.67 5500  
 HH-Probe 3655.45 5500  
 DRL-LSH 6531.86 5500  

vehicle fleet, and stochastic travel times. We introduce a Deep Rein-
forcement Learning (DRL) framework to control problem-dependent 
local search heuristics throughout the search process, referred to as 
DRL-LSH. By modeling the search procedure as a sequential decision-
making problem, the DRL agent can adapt its search strategies by taking 
actions based on problem-dependent heuristics derived from the search 
state.

Computational experiments demonstrate that DRL-LSH performs 
competitively with other metaheuristic and hyperheuristic methods 
on small-sized problems and outperforms these methods on large-
scale instances, achieving a 24.26% improvement over the second-best 
method, the HH-Probe hyperheuristic. Notably, the performance gap 
between DRL-LSH and other methods increases as the problem size 
grows, stemming from the ability of DRL to capture useful information 
about the problem instance and drive the selection of appropriate 
operators. Additionally, DRL-LSH exhibits robust performance in scala-
bility experiments, where the method is evaluated on unseen instances 
with additional e-bins, customers, and vehicles. The integration of low-
level heuristics into the DRL framework allows DRL-LSH to provide a 
level of interpretability, addressing a limitation of end-to-end neural 
network-based methods to some extent. Moreover, we present exper-
iments with an alternative reward function that uses the solutions 
generated by metaheuristics to measure performance and guide the 
DRL agent during the training process.  In solving the Singapore e-
waste collection case study with 250 e-bins and 250 customer requests, 
the proposed DRL-LSH method achieved an average profit value of 
6531.86, outperforming the second-best method, HH-Probe, by 78.7% 
(3655.45) and significantly surpassing other baselines like HH-Q, Sim-
GRASP, GRASP-Q, and GRASP-PR. These results demonstrate DRL-
LSH’s effectiveness in addressing large-scale, complex routing problems 
characterized by dynamic requests, time-sensitive tasks, and stochastic 
travel times, showcasing its potential for real-world applications in 
e-waste collection and similar domains.

For future research, it is worth considering the inclusion of more 
real-world stochastic elements in e-waste collection, such as stochastic 
service times, e-waste load variations, and other sources of uncer-
tainty. Regarding the enhancement of the DRL-LSH algorithm, the 
reward function merits further experimentation in future research. 
Future research may also explore alternative actions for escaping local 
optima, such as perturbations from the current solution or the use of 
destroy-and-repair operators.
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