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Abstract

Itinerary recommendation is a complex sequence prediction problem with
numerous practical applications. The task becomes significantly more challenging
when optimizing multiple factors simultaneously, such as user queuing times,
crowd levels, attraction popularity, walking durations, and operating hours. These
factors, combined with the dynamic and unpredictable nature of visitor flow,
introduce substantial complexities, particularly when accounting for collective
user behavior. Existing solutions often adopt a single-user perspective,
overlooking critical challenges arising from natural crowd dynamics. For example,
the Selfish Routing problem illustrates how individual decision-making can lead to
suboptimal outcomes for the group as a whole. To address these challenges, we
propose the Strategic and Crowd-Aware Itinerary Recommendation (SCAIR)
algorithm, which integrates real-world crowd behavior into route planning to
optimize group utility. SCAIR models itinerary recommendation as a Markov
Decision Process (MDP) and incorporates a novel State Encoding mechanism
that facilitates real-time, efficient itinerary planning and resource allocation in
linear time. By prioritizing group outcomes over individual preferences, SCAIR
explicitly mitigates the adverse effects of selfish routing. We conduct extensive
evaluations of SCAIR using a large-scale, real-world theme park dataset,
benchmarking it against several competitive and realistic baselines. Our results
demonstrate that SCAIR consistently outperforms these baselines, effectively
addressing the limitations of selfish routing and significantly enhancing overall
group utility across four major theme parks.

Keywords: Itinerary recommendation; Crowd-aware Algorithms; State Encoding;
Utility Optimization; Markov Decision Process; Sequence Modelling

1 Introduction

The field of itinerary recommendation has experienced significant growth in re-

cent years, driven by its broad applicability across various domains, particularly

in tourism where efficient tour planning is crucial. Itinerary recommendation is in-

herently a complex sequence prediction problem, presenting substantial challenges

in real-world scenarios. Solving such problems using exact optimization approaches

is often infeasible due to the interdependence between data points, as each point

influences others within the sequence. Consequently, the combinatorial search space

expands exponentially as the dataset size increases, making exact solutions compu-

tationally prohibitive. To address this, most research relies on heuristic and function

approximation methods, which are commonly employed to derive efficient and prac-

tical solvers for such problems.
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Figure 1 Current itinerary recommendation approaches predominantly employ data-driven
methods that focus on single-user perspectives. However, this often leads to the Selfish Routing
problem in real-world scenarios, where allowing individuals to act solely based on their preferences
results in sub-optimal social welfare for the collective group. As illustrated, the recommended path
is performed sub-optimally, where overcrowding occurs at POIs closer to the start of the route,
while other POIs remain underutilized, as depicted by the greyed-out areas.

1.1 Motivation and Real-World Challenges

Recommending and planning effective itineraries in real-world environments is par-

ticularly complex and challenging due to the involvement of multiple Points of

Interest (POIs), each with varying levels of popularity and crowd density. For in-

stance, in a theme park, a visitor’s route might include attractions such as roller

coasters, water rides, and other attractions or live events. Itinerary recommendation

can be framed as a utility optimization task, where the objective is to maximize

the number and popularity of visited facilities [1], while simultaneously minimizing

queuing times and travel times between facilities. Facilities in a theme park ex-

hibit diverse properties such as popularity, duration of stay, location, and dynamic

queuing times. Furthermore, visitors are often constrained by a fixed time budget,

limiting the number of attractions they can visit in a single trip. Although numerous

algorithms have been developed [1, 2, 3, 4, 5] to recommend itineraries, they pri-

marily focus on individual travelers. However, in real-world scenarios, an itinerary

is also influenced by the actions of other visitors, such as increasing queuing times

at popular facilities due to crowding.

To develop an effective route planning strategy, data on past visit histories of at-

tractions can be obtained from publicly available sources, such as Flickr, Wikipedia,

or Google Reviews. This data can then be used to analyze the popularity, expected

queuing times, and distances between various facilities. Personalizing the strategy

further involves incorporating user preferences to create a customized itinerary [6].

However, in real-world dynamic environments, visitors often struggle to identify an

optimal path due to the lack of real-time information about other visitors’ move-

ments. Similarly, static recommendation algorithms based solely on historical data

fail to optimize for social welfare, as they do not account for the current state of the

[1]We use the terms ”POIs”, ”attractions,” and ”facilities” interchangeably in this

paper.



Liu et al. Page 3 of 26

environment at the time of recommendation. For example, visitors typically adopt

one of two intuitive strategies: (1) minimizing travel distance by selecting the near-

est facility or (2) maximizing the popularity of attractions by visiting the next most

popular location within a certain radius. Our research demonstrates that neither of

these strategies effectively maximizes a visitor’s utility in dynamic systems, where

the actions of other visitors significantly impact the overall state of the system.

1.2 Existing Approaches and the Selfish Routing Problem

Many existing works focus on constructing a single optimal path for individual

travelers, based on historical data. While this approach may work well for a single

traveler, it becomes suboptimal when all travelers receive the same recommenda-

tion. Consider a recommender system that suggests an itinerary comprising the

most popular POIs with the historically shortest queuing times. In a real-world sce-

nario with multiple travelers, all agents will follow the same recommended itinerary,

initially benefiting from the short historical queuing times. However, as more trav-

elers arrive and follow this path, the expected queuing times will increase, as shown

in Figure 1. In other words, the later an agent [2] arrives, the longer their expected

queuing time will be. This situation leads to a failure in optimizing collective utility

or social welfare for all agents. From the perspective of an individual traveler, it is

difficult to gain knowledge of the system’s state, i.e., the number of people visiting

the park and their respective paths. As a result, allowing an agent to indepen-

dently find an optimal strategy that maximizes their utility is unrealistic without

considering the actions of other agents within the system.

While numerous algorithms have been developed for itinerary recommenda-

tion [2, 7, 4, 5], they predominantly focus on single-user optimization, assuming

each traveler acts in isolation. These models often use historical data to recommend

a sequence of popular or nearby attractions, optimizing for criteria such as dis-

tance [2], popularity [4], or visit recency [5]. However, in real-world scenarios, such

as theme parks, multiple travelers concurrently move around, resulting in emergent

crowd dynamics that are not captured by these static, individual-centric models.

For example, algorithms like those in [2, 1] assume that queuing time is constant or

estimated from past data, without accounting for how concurrent visitors following

similar recommendations can inflate these times. Even group itinerary models, such

as [8, 9], often emphasize preference aggregation within small predefined groups, and

do not model system-wide interaction effects across multiple groups or individuals.

As a result, these approaches may yield good individual outcomes but suboptimal

collective outcomes, as they neglect the feedback loops between individual decisions

and overall system state, a phenomenon well-known in game theory as the Selfish

Routing problem [10].

The Selfish Routing problem refers to the phenomenon where individuals make

route choices based solely on personal benefit, such as minimizing their own travel

or queuing time, without regard for how their choices affect others. While such

behavior may seem rational at the individual level, it often leads to system-wide

inefficiencies, including overcrowding at popular attractions and under-utilization

of other attractions. This problem has been widely studied in algorithmic game

[2]We use the terms travelers, visitors, and agents interchangeably in this paper.
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theory, where it is shown that decentralized decision-making can produce outcomes

far from the global optimum, a concept formalized by the Price of Anarchy [10]. In

the context of itinerary recommendation, when all visitors are guided by the same

personalized strategy (e.g., to the attraction with historically low queuing times),

it creates congestion at those attractions, degrading the experience for everyone.

Our work addresses this challenge by shifting from a purely individual optimization

framework to a crowd-aware, system-level approach, in which recommendations are

dynamically adjusted to account for real-time visitor flow and collective welfare.

1.3 Our Proposed Approach

To address this issue, we propose the Strategic and Crowd-Aware Itinerary Rec-

ommendation (SCAIR) algorithm, a recommender system that monitors internal

information for all recommended routes and utilizes this information to provide dy-

namic routing recommendations to arriving agents. By adopting a game-theoretic

approach, we develop a crowd-aware itinerary recommendation algorithm that mit-

igates the Selfish Routing problem [10], where allowing agents to act independently

leads to suboptimal social welfare. Specifically, we model the itinerary recommen-

dation problem as a strategic game [11], where the system (e.g., a theme park)

establishes a set of allocation rules to assign routes to each player, rather than al-

lowing agents full autonomy in choosing their paths. Our experiments show that

this approach significantly improves group utility across agents, enhancing overall

social welfare.

We conduct our experiments using a publicly available theme park dataset

from [6], which comprises over 655k geo-tagged photos from Flickr. This dataset

is notable for being the first to include queuing time distributions for attractions

across various Disney theme parks in the United States. Preliminary experiments

conducted on two smaller theme parks demonstrate promising results, with our ap-

proach significantly outperforming benchmark algorithms. However, we also iden-

tified a limitation of the proposed algorithm: the computation time required for

the pathfinding process grows in factorial time with the size of the theme parks,

presenting scalability challenges.

To overcome this scalability issue, we introduce a State Encoding mechanism that

significantly reduces the computational complexity of the pathfinding algorithm.

By leveraging the transition matrix of a Markov Decision Process, we efficiently

track crowd distribution at each time step. This innovation allows us to reduce

the algorithm’s complexity from factorial to polynomial, making it computationally

feasible for larger datasets. Consequently, we are able to conduct experiments on

two larger theme parks, further demonstrating the scalability of our approach.

2 Main Contributions
The main contributions of this paper are summarised as follows [3]:

[3]This paper is an extended version of [12], with an addition of more than 50% new

material. These additions include: (1) an updated literature review with more recent

works and two additional domains, namely Vehicle Network and Natural Language

Processing; (2) a more detailed description of the SCAIRv1’s core algorithms with
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• We introduce and formulate the crowd-aware itinerary recommendation prob-

lem as a social welfare optimization problem that accounts for the actions of

multiple travelers, contrasting with existing approaches that focus solely on

the single-traveler perspective (Section 4).

• To address this crowd-aware itinerary recommendation problem, we propose

the SCAIR algorithm, which recommends itineraries that optimize group util-

ity for multiple agents, effectively considering the collective impact of individ-

ual actions (Section 5).

• We propose a general state encoding mechanism that enables real-time

itinerary recommendations in large environments, improving scalability and

computational efficiency (Section 6).

• We conduct an algorithmic complexity analysis of the state encoding mech-

anism, demonstrating linear-time complexity for both the update procedure

and the pathfinding algorithm (Section 6.6).

• We update and add new information to the original dataset to better facilitate

our experiments and enhance the usability of the dataset. This dataset is made

publicly available at https://github.com/junhua/SCAIR to facilitate further

research on itinerary recommendation (Section 7.1).

• Using a theme park dataset, we compare our SCAIR algorithm against various

competitive and realistic baselines and show how SCAIR outperforms these

baselines with a large reduction in queuing times and improvement in utility

(Sections 7 and 8).

The remainder of this paper is organized as follows: Section 3 reviews related

works and highlights how our research extends and differs from these earlier contri-

butions. Section 4 formulates the itinerary recommendation problem, incorporating

crowd and queuing time awareness. Sections 5 and 6 present two versions of the

strategic itinerary recommendation algorithms and introduce a system encoding

mechanism. Section 6.6 provides a complexity analysis of the proposed algorithms.

Sections 7 and 8 describe the experimental setup and discuss the results. Finally,

Section 9 summarizes the paper’s contributions and outlines potential future re-

search directions.

3 Related Work
The field of itinerary recommendation has garnered significant attention, leading

to a diverse array of proposed solutions spanning multiple disciplines. This review

synthesizes key contributions from domains such as Operations Research, Vehi-

cle Routing, Natural Language Processing, and Information Retrieval, emphasizing

their relevance to itinerary recommendation and related tourism challenges. We per-

form a literature review of these studies to highlight the methodologies employed,

including optimization techniques, heuristic algorithms, and data-driven models.

pseudo codes; (3) proposal of a new pathfinding algorithm and its state encoding

mechanism with pseudo codes and extensive explanations; (4) an analysis of the

algorithmic complexity; (5) additional experiments conducted on on two theme

parks with 25 and 27 POIs, respectively, which are 45% to 108% larger than the

two theme parks from previous work; (6) a more thorough discussion of experimental

results, findings, and future research directions.
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Furthermore, we identify the limitations inherent in existing approaches, partic-

ularly their challenges in optimizing group utility and accommodating dynamic

real-world constraints. This discussion establishes a foundational context for intro-

ducing the novel methodology proposed in this paper, which aims to address these

gaps and advance the state-of-the-art in itinerary recommendation systems.

3.1 Recent advancements of Itinerary and Tourism-related Recommendation

Numerous methodologies have been proposed to address the itinerary recommen-

dation problem, leveraging variants of the Orienteering Problem to incorporate di-

verse constraints and objectives. For instance, Chen et al. introduced a multi-task

learning framework that optimizes Points of Interest (POIs) selection by deriving

consensus among group members, thereby enhancing group satisfaction [8]. Halder

et al. proposed a Monte Carlo Tree Search-based reinforcement learning approach to

prioritize POIs based on factors such as long visit durations, short queuing times,

high popularity, and elevated visitor interest [13]. Sarkar et al. addressed group

itinerary recommendation by modeling it as a non-Markovian process, incorporat-

ing travelers’ historical data when available to tailor recommendations [9]. Zhang

et al. employed heuristic approximations to solve a variant of the problem that ac-

counts for POI opening hours and integrates uncertainties arising from diverse travel

modes [14, 1]. Alternative strategies include leveraging the Ant Colony System to

optimize itinerary planning [15], as well as adaptations that consider crowd levels to

mitigate congestion at POIs [16]. Moreover, integer programming has been utilized

to optimize itineraries by aligning with user interests, factoring in the duration of

tourist visits at POIs as a measure of relevance [2].

Although recent advancements in itinerary recommendation have introduced im-

portant techniques to capture user preferences, group consensus, and contextual

constraints, there remain certain limitations. For example, most existing works as-

sume a static or single-agent setting, which fails to account for crowd interactions

and real-time dynamics. These limitations restrict their effectiveness in environ-

ments like theme parks, where simultaneous decision-making among many agents

can significantly alter the system state. Our work addresses this gap by introducing

a dynamic, crowd-aware model that explicitly accounts for inter-agent dependencies

and real-time queuing feedback.

3.2 Operations Research

The itinerary recommendation problem has often been modeled within the Oper-

ations Research domain as a variant of the Orienteering Problem. This problem

represents routing challenges on a connected graph, where the objective is to deter-

mine a path through nodes that maximizes overall profit without exceeding prede-

fined budget constraints. Typical budget constraints include travel time or distance

between attractions in an itinerary [17, 18, 19, 20]. Solutions to the Orienteering

Problem frequently focus on optimizing social welfare by maximizing global rewards,

such as the popularity of Points of Interest (POIs). However, these approaches often

neglect the trade-offs between a facility’s visit duration and its popularity, a factor

that can significantly influence the overall profit. Given the extensive history of

research on the Orienteering Problem, several valuable survey papers comprehen-

sively document its advancements and challenges over different periods [21, 22, 23].
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These surveys provide critical insights into the evolution of methodologies, emerging

trends, and persistent challenges, offering a holistic view of this problem space.

Approaching itinerary recommendation from the Operations Research perspec-

tive offers valuable problem formulations, particularly via orienteering variants that

model path planning with budgets and constraints. While these approaches inform

key constraints in our model, such as time and distance, they generally focus on

optimizing static objectives and do not address dynamic system behavior caused

by concurrent and multiple agents. In contrast, our approach integrates real-time

crowd feedback into the itinerary generation process, enabling responsive and adap-

tive recommendations that optimize both individual and social welfare.

3.3 Vehicle Networking

In the domain of Vehicle Networking, numerous studies have addressed routing and

scheduling challenges by formulating and solving variants of the Vehicle Routing

Problem (VRP). These solutions leverage advanced algorithms, including the Ge-

netic Algorithm [24], Tabu Search [25], Variable Neighborhood Search (VNS) [26],

Simulated Annealing [27], and Branch and Cut [28]. Recent contributions in this

area exemplify the application and enhancement of these algorithms. For instance,

Han et al. introduced an improved Adaptive Genetic Algorithm that outperforms

conventional genetic algorithms in efficiency and solution quality [24]. Li et al.

utilized Tabu Search for gateway assignment in airport scheduling, demonstrating

its effectiveness in optimizing resource allocation [25]. Similarly, Cai et al. pro-

posed a collaborative Variable Neighborhood Search (VNS) framework tailored for

multi-objective distributed scheduling tasks, showcasing improved performance in

balancing conflicting objectives [26]. Other researchers have also studied different

aspects of the VRP and related problem, such as in terms of considering a stochastic

travelling time [29], charging prediction for electric buses [30]

Routing techniques from vehicle networking provide inspiration for scalable

path optimization under multiple constraints. However, most VRP solutions are

grounded in centralized planning for fleet management rather than decentralized,

agent-driven itinerary selection. Moreover, crowd effects and mutual interference

among agents are rarely modeled explicitly. Our study adapts the strengths of these

algorithms, such as heuristic efficiency, while embedding them within a strategic

framework that accounts for competitive agent behavior and social impact.

3.4 Natural Language Processing

In the Natural Language Processing (NLP) domain, we have seen a rapid advance-

ment in sequence models in recent years following the introduction of attention

mechanism and transformer models. In 2017, Vaswani et al. from Google introduced

Transformer [31], a new category of deep learning models solely attention-based and

without convolution and recurrent mechanisms. Later, Google proposed the Bidi-

rectional Encoder Representations from Transformers (BERT) model [32], which

drastically improved state-of-the-art performance for multiple challenging Natural

Language Processing (NLP) tasks. Since then, multiple transformer-based models

have been introduced, such as GPT [33], XLNet [34], T5 [35] and PaLM [36], among

others. Transformer-based models were also deployed to solve domain-specific tasks,
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such as medical text inference [37], semi-structured data embedding [38], crisis signal

detection [39], and occupational title embedding [40], and demonstrated remarkable

performance. Despite promising results across different tasks in natural language

processing, understanding, and inference, limited works examine the performance

of transformer-based models in the itinerary recommendation space.

Advances in NLP have contributed powerful tools for sequence modeling and de-

cision prediction, which can be useful for forecasting user trajectories or encoding

complex state transitions. However, most transformer-based models in this space

focus on individual preference inference and lack explicit mechanisms for model-

ing collective impact or crowd dynamics. Our work bridges this gap by combining

MDP-based decision processes with dynamic, real-time state encoding, drawing in-

spiration from sequence modeling while extending it to a multi-agent, strategic

context.

3.5 Information Retrieval

In the Information Retrieval community, item recommendation has long been as a

prominent research area, with natural extensions into the domain of recommending

Points of Interest (POIs). One widely explored approach involves leveraging alge-

braic techniques such as matrix factorization and tensor models to develop tourism

recommender systems, effectively capturing latent user preferences and POI char-

acteristics [41, 42]. Another prevalent methodology is top-k POI recommendation,

which employs collaborative filtering augmented with additional mechanisms to

generate a ranked list of the most relevant locations. These enhancements include

incorporating contextual information, user preferences, and spatial-temporal factors

to refine recommendations [43, 44, 45, 46, 47, 48].

Information retrieval approaches have enriched itinerary planning through collab-

orative filtering and tensor-based recommendation. However, they largely operate

in a passive prediction mode and lack an interactive or strategic optimization layer.

These systems tend to recommend high-utility POIs without accounting for the

emergent effects of many users pursuing similar recommendations. In contrast, our

algorithm dynamically adjusts recommendations to anticipate crowd effects, ensur-

ing balanced usage of facilities and improving global system utility.

3.6 Overall Limitations

A notable limitation of earlier works is their reliance on recommendation algorithms

constructed from an individual-centric perspective. While some recent studies have

begun exploring the effects of group or crowd behavior [16, 49, 50, 51, 52], these

approaches generally model the system as a static environment, where dynamic

factors such as queuing times are derived solely from historical data. This static

modeling framework has an inherent drawback: self-interested agents optimize their

own objectives without accounting for the collective impact on social welfare. For

example, in the context of a theme park, if all visitors are directed to follow the

same recommended path, queuing times at popular attractions will surge, leading

to a breakdown in the effectiveness and optimality of the recommendation system.

This phenomenon aligns with the Selfish Routing problem discussed extensively by

Roughgarden [10], where individual agents acting solely in their self-interest result
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in sub-optimal outcomes for the broader system. Addressing such challenges requires

rethinking recommendation strategies to balance individual preferences with collec-

tive welfare, ensuring robust performance in dynamic, real-world environments.

The Selfish Routing problem has been extensively studied in the fields of Game

Theory and Mechanism Design [10, 53, 54]. A key measure of inefficiency in such

systems is the Price of Anarchy (PoA), defined as the ratio between the worst-case

Nash equilibrium and the optimal collective payoff in a game-theoretic environ-

ment [53, 54]. This metric quantifies the disparity between self-interested decision-

making and the global optimum. A well-known example of such inefficiency is

Braess’s Paradox [55], which illustrates how adding a new link to a transporta-

tion network can paradoxically increase the overall travel time for all users, as self-

interested agents disrupt system-wide efficiency [56]. To address such issues, system

operators can intervene by designing policies or economic incentives that guide

agents toward more socially optimal outcomes. These interventions often involve

leveraging game-theoretic principles to align individual actions with system-wide

objectives. In this paper, we introduce a game-theoretic, dynamic itinerary recom-

mendation algorithm as an example of such a strategy. By incorporating dynamic

feedback and carefully designed mechanisms, our approach aims to balance individ-

ual preferences with collective welfare, mitigating inefficiencies and improving the

overall effectiveness of the recommendation system.

3.7 Proposed Method

To address these limitations, we propose the Strategic and Crowd-Aware Itinerary

Recommendation (SCAIR) algorithm, which aims to enhance welfare optimization

by mitigating the inefficiencies caused by decentralized decision-making [57]. SCAIR

dynamically models itinerary planning scenarios, such as theme park navigation,

by considering all visitor itineraries and leveraging knowledge of other visitors’ pre-

dicted paths. The algorithm recommends the next destination for each visitor while

accounting for the expected queuing times at all facilities, which are dynamically

updated based on the anticipated number of visitors at each location during a given

time slot. A key innovation of SCAIR is the introduction of a State Encoding mech-

anism, which captures real-time crowd distribution data within a transition matrix.

This mechanism enhances the algorithm’s path-finding capabilities by providing

a dynamic and granular view of crowd behavior. To validate its effectiveness, we

evaluate SCAIR against three benchmark algorithms using simulations informed by

real-world data. The results are analyzed and discussed to demonstrate the perfor-

mance and scalability of our approach in optimizing both individual experiences

and collective welfare.

4 Crowd-aware Itinerary Recommendation Problem
In this section, we first give an overview of our general approach, followed by for-

mulating our crowd-aware itinerary recommendation problem, before showing the

NP-hardness of this proposed problem.

4.1 General Approach

In this work, we approach the itinerary recommendation problem from a global

perspective, formulating it as a strategic game. In this formulation, the system
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acts as a central planner, designing and distributing optimal paths for each agent

upon arrival, based on the current state of the system and the paths of existing

agents. In the context of a theme park, this central entity can be envisioned as the

park operator, responsible for recommending customized itineraries to visitors to

optimize their experience while balancing system-wide efficiency. To achieve this,

we propose the Strategic and Crowd-Aware Itinerary Recommendation (SCAIR)

algorithm, which dynamically generates route recommendations by accounting for

the movements and interactions of all active agents in the system. By integrating

real-time data and strategic modeling, SCAIR ensures that recommendations are

adaptive to crowd distributions, enhancing both individual visitor satisfaction and

overall operational efficiency.

The crowd-aware itinerary recommendation problem aims to maximize the col-

lective utility of all agents in the system, effectively formulating a social welfare

optimization problem. This problem is known to be NP-hard [58], presenting sig-

nificant computational challenges. Moreover, simulating or solving this problem is

empirically demanding, as it requires consideration of the entire history of existing

visitors. This results in computational complexity that scales factorially with both

the number of agents in the system and the number of facilities in a given path,

making efficient solutions difficult to achieve.

To address these challenges, we propose a simplified model that frames the rec-

ommendation problem as a finite Markov chain. This approach leverages the com-

putational efficiency of Markov models, which are known to be in NC [59] and

decidable in poly-logarithmic time [60]. The simplified model assumes that each

decision incorporates information about the immediately preceding decision, effec-

tively encoding a snapshot of the entire decision history within the current state.

This abstraction significantly reduces computational complexity while retaining suf-

ficient information to guide accurate recommendations. In the following section, we

detail the formulation of this problem.

4.2 Problem Formulation

We formulate the crowd-aware itinerary recommendation problem as a finite Markov

chain, incorporating practical constraints to ensure alignment with real-world sce-

narios. Specifically, we impose the following constraints: (1) a fixed starting point,

typically located near the entrance; (2) a time budget for the itinerary, reflecting

the limited duration available for visitors to tour; and (3) a maximum allowable

distance between two consecutive stations, addressing the dissatisfaction associ-

ated with long walking distances between facilities. These constraints enhance the

model’s applicability to real-life contexts, improving its relevance and usability for

dynamic itinerary planning.

We model the theme park comprising numerous tourist attractions as a fully

connected graph G(F,C), where F = {f1, ..., fn} is the collection of n facilities in

the system, and C = [cij ] is the set of connections from fi to fj . Each connection cx

is associated with the properties of distance Dist(cij) and travel time Trav(cij) in

minutes. Each facility fx is associated with a set of properties including coordinates

(latx, longx), duration of visit Dur(fx) in minutes, capacity Cap(fx) and popularity

Pop(fx).
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We formulate the agents’ visits as m states S = {s1, ..., sm}, where each state sx

is associated with a feasible path px = [f
(x)
1 , ..., f

(x)
nx ] with n facilities [f

(x)
1 , ..., f (xn)].

The total time TTx of path px is defined as:

TTx =

nx∑
i=1

Dur(f
(x)
i ) +

nx−1∑
i=1

Trav(ci,i+1) (1)

We model the utility of agents as a function of the popularity of each facility visit,

normalized by the expected waiting time at that facility. The underlying assumption

is that higher facility popularity reflects greater attractiveness to visitors, moderated

by the associated waiting time. The utility function Ux for path x with n nodes is

defined as follows:

Ux =

∑
f∈pj

Pop(f)

Q(px|px−1)
(2)

where Q(px|px−1) is the expected queuing time at path px given px−1, and Pop(px)

is the sum of popularity of all facilities in the path. The path’s expected queuing

time Q(px|px−1) is calculated by summing up the queuing time at all facilities:

Q(fi) =
1

Cap(fy)
Dur(fy)δ(f

(x)
y,h = f

(x−1)
y,h ) (3)

where δ(f
(x)
y,h = f

(x−1)
y,h ) = 1 if the facility appears to overlap between paths px and

px−1 within the same hour h. Capacity Cap(fx) is set to be a constant for simplicity.

Finally, the transition matrix T is defined as:

Tij =

∑
f∈pj

Pop(f)

Q(pj |pj−1=i)
(4)

The transition matrix is then normalized by:

Tij :=
Tij∑
j Tij

(5)

The set of feasible paths, i.e., total search space, is determined by solving an

optimization problem as follows:

maximize TTx =

nx∑
i=1

Dur(fi) +

nx−1∑
j=1

Trav(cj,j+1)

subject to Dist(cj,j+1) ≤ s, TTx ≤ t

(6)

for n facilities in the path, with a constant time budget t.

Finally, we model the strategic itinerary recommendation problem as a social

welfare optimization problem as follows:



Liu et al. Page 12 of 26

maximize W =
∑
x

Uxpx

subject to
∑
x

TTx ≤ t, x ∈ {1, ..., n}
(7)

for n agents and time budget t.

4.3 Proof of NP-Hardness

We further investigate the NP-hardness of various sub-problems and show the re-

spective proofs in this section.

Theorem 1 The pathfinding problem defined in Equation 6 is NP-hard.

Proof We prove the NP-hardness of the pathfinding problem by reducing from the

0-1 Knapsack problem, which is known to be NP-hard [61]. Recall that the 0-1

Knapsack problem is a decision problem as follows:

maximize z =
∑
i

pixi

subject to
∑
i

wixi ≤ c

xi ∈ {0, 1}, i ∈ {1, ..., n}

(8)

for n available items where xi represents the decision of packing item i, pi is the

profit of packing item i, wi is the weight of item i, c is the capacity of the knapsack.

Intuitively, the pathfinding problem is a decision problem of allocating a set of

facilities into a path with a time budget constraint, where each facility has properties

of a profit and a duration.

Formally, we transform the minimization problem in Equation 6 into an equiva-

lent maximization problem. Concretely, the binary variable fi ∈ {0, 1} is included,

where fi = 1 if fi is in path px, and 0 if otherwise. Furthermore, we define the

profit of facility fi as pi = −Dur(fi) and set the travel time Trav(cij) to be a

constant. Finally, the distance constant cap s is set to be infinity. The new problem

formulation is represented as follows:

maximize T ′
path =

∑
i

pifi

subject to
∑
i

Dur(fi)fi ≤ t

fi ∈ {0, 1}, i ∈ {1, ..., n}

(9)

In this formulation, a path is equivalent to the knapsack in the 0-1 Knapsack

problem, where each facility has its profit of pi), and its cost of Dur(fi) that is
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equivalent to the profit and weight of an item respectively. The maximization prob-

lem is subjected to a constant time budget t, which is equivalent to the capacity c

in a 0-1 Knapsack problem.

As a result, for any instance of the 0-1 Knapsack problem (i.e., item allocation

decisions), we can find an equivalent instance of the pathfinding problem (i.e., fa-

cility allocation decision). Therefore, a solution in the pathfinding problem yields

an equivalent solution to the 0-1 Knapsack decision problem. As such, we have

completed the proof of NP-hardness for our path-finding problem to be NP-hard.

Theorem 2 The social welfare optimization problem defined in Equation 7 is

NP-hard.

Proof Once again, we prove the NP-hardness of our welfare optimization problem

by reducing it from the 0-1 Knapsack problem.

In Equation 7, the set of paths assigned to agents in the system is equivalent to

the set of items in the 0-1 Knapsack problem; each path has its utility and total

time, which are equivalent to the profit and weight of an item respectively; the

maximization problem is subjected to a constant time budget t which is equivalent

to the capacity c in a 0-1 Knapsack problem.

As a result, for any instance of the 0-1 Knapsack problem decisions, we can find

an equivalent instance of a path assignment decision that yields a solution to the

original Knapsack decision problem. As such, we conclude the proof of NP-hardness

and have shown that our welfare recommendation problem is NP-hard.

Next, we describe our proposed SCAIR algorithm for solving this crowd-aware

itinerary recommendation problem.

5 Strategic and Crowd-Aware Itinerary Recommendation
(SCAIR)

In this section, we describe our proposed SCAIR algorithm, which comprises the

main steps of finding feasible paths, generating a transition matrix, and simulating

traveler visits.

5.1 Finding Feasible Paths

Algorithm 1 shows the pseudocode of our path-finding algorithm based on a

breadth-first strategy. The input is a graph G(F,C) that represents a theme park

with the set of facilities F and connections C, time budget TTmax, and distance

limit between two facilities Distmax. This algorithm then generates and returns a

collection of feasible paths, Paths, based on the provided input graph G(F,C).

We iterate the collection of intermediate Paths and call the FindV iableFacilities

function to find viable facilities, where f
(i)
−1 is the last facility of the path, and

Distmax is the maximum distance an agent wants to travel from one facility to

another. We set the parameters of total time budget Tmax < 8hours and maximum

allowed distance between two facilities Distmax(fcurrent, fnext) < 200m. If there is
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Algorithm 1: SCAIR - FindFeasiblePaths()

Data: fi ∈ F, cij ∈ C, TTmax, Distmax, f0
Result: Paths: the set of feasible paths
begin

Paths = [[f0]];
while True do

for pathi ∈ Paths do

V F = FindV iableFacilities(f
(i)
−1, Distmax);

if len(V F ) == 0 then

pathx = pathi + [FindNextNearest(f
(i)
(−1)

)];

if TTx < TTmax and pathx ̸∈ Paths then
Paths+ = [pathx];
Paths.pop(pathi)

end

end
foreach vf ∈ V F do

pathx = pathi + [vf ];
if TTx < TTmax and pathx ̸∈ Paths then

Paths+ = [pathx];
end

end
Paths.pop(pathi);

end
if AllPathsMaxTimeBudget(Paths) or AllPathsReachFullLength(Paths) then

break;
end

end

end

no available facility that meets the distance constraint and the path has sufficient

time budget remaining, the agent proceeds to the next nearest facility. We also do

not allow an agent to revisit a facility on the same trip.

5.2 Transition Matrix

SCAIR introduces a discrete-time state encoder that acts as the transitional matrix

of the Markov chain. The row and column headers are the POIs, and the cells record

the expected transitional utilities from one POI to the other at any given time. The

transitional utilities at a given time represent the expected utilities of the optimal

path.

Specifically, we find the set of feasible paths (discussed in section 5.1) to construct

a transition matrix T by calculating Tij as the costs of taking path j given path

j−1 = i. The output of the FindCost() function varies based on the arrival interval

λ because it affects the expected arrival time for each facility at pathj , which leads

to the different occurrences of overlapping facilities between pathi and pathj .

Algorithm 2 shows the pseudo-code of our algorithm to calculate the transition

matrix for the next state.

The input is the transition matrix at current state SE, the POI information fi,

costs cij and a set of limitations limits.

Line 2. The algorithm starts with a 2-dimensional array, where the row and

column headers are the lists of POIs. We loop through the SE and update each

cell.

Line 3. Find all feasible paths where the starting POI is fi.

Line 4. Filter paths that the second POI is fj .
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Algorithm 2: TransitionMatrixNext()

Data: SEt, fi, cij , limits
Result: progress one step for the state encoder
begin

foreach SE[i, j] do
paths = FindFeasiblePaths(fi, cij , ...limits, f0 = fi);
pathsj = paths[f1 = fj ];
Uj = [];
foreach path in pathj do

up = CalculateUtility(path);
Uj .append(up);

end
SE[i, j] = max(Uj);

end

end

Line 5 to 9. Calculate the utility of each path in pathsj .

Line 10. Update the cell SE[i, j] with the maximum utility.

5.3 Simulation

Algorithm 3 shows an overview of the simulation procedure, which involves iterating

through the visit data of theme parks Parks, a list of time budgets TimeBudgets,

and an array of arrival intervals ArrivalIntervals.

Algorithm 3: SCAIR - Simulate()

Data: Parks, T imeBudgets, ArrivalIntervals
Result: Export simulation data to a CSV file
begin

Results = {};
for Park ∈ Parks do

for SimTime ∈ T imeBudgets do
for λ ∈ ArrivalIntervals do

Paths = FindFeasiblePaths(Park, SimTime);
T = ConstructTM(Park, Paths);
Qt, Pop, Utility = RunSimulation(Paths, λ, SimTime);
Update(Results, [Qt, Pop, Utility]);

end
end

end
ExportCsvFromDict(Results);

end

Line 2. The algorithm starts with constructing a 2-dimensional array, where each

row represents a path as a sequence of facilities visited. We then conduct a breadth-

first search (line 3 to 25), starting with the first row with an element of the initial

facility, i.e., the entrance of a theme park.

Line 6 to 11. Suppose the algorithm is unable to find a facility within the feasible

range. In that case, it will instead find the nearest facility that is not yet visited

and assign the new path into the Paths collection if two conditions are met, namely

(1) the new path’s total time is within the visitor’s time budget TTmax, and (2) no

identical path exists in the Paths collection. Eventually, we remove the path the

iteration started off.

Line 13 to 20. If the algorithm manages to find a set of viable facilities, it will

then iterate through the set and execute a similar selection process.
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Line 22 to 24. The algorithm breaks out from the infinite loop when any one

of two conditions is met, namely (1) all paths in the Paths collection have reached

their time budget, i.e., any additional facility will make the total time of a path to

be larger than the visitor’s time budget; or (2) every path has included all available

facilities.

Line 6 to line 13. For each step, the FindFeasiblePaths() function finds the

set of feasible paths which enables the ConstructTM() function to construct the

transition matrix, with input parameters namely park data Park and simulation

time SimTime. The RunSimulation() function then simulates to find the total

queuing time Qt, the average popularity among all facilities visited Pop, and the

expected utility Utility which is calculated as a function of Qt and Pop. Finally,

after completing the simulations, we update the Results dictionary (Line 9) and

export the experimental data into CSV files (line 13).

6 SCAIRv2
In this section, we describe our proposed SCAIRv2 algorithm, which overcomes

the limitation of SCAIR, where its complexity restricts it from running large-scale

simulations.

6.1 Limitation of SCAIR

SCAIR has a factorial time complexity that grows with the number of facilities in

a park and the number of visitors. It utilizes a greedy approach for the next-POI

recommendation. SCAIR calculates the expected utility of the optimal path starting

from the targeted POI, considering the crowd information and waiting time. While

SCAIR can handle small-scale environments with time constraints, given a larger

setting however, the search process may take too long to recommend an optimal

path in time in practice.

6.2 Discrete-time State Encoding

To overcome the problem mentioned earlier, we propose the second version of

SCAIR, or SCAIRv2, which introduces a discrete-time state encoder to record crowd

distribution and recommend optimal paths in real-time. Specifically, a state encoder

is a two-dimensional array. The row indexes are the time steps calculated by the

operating hours divided by a preset interval in between time steps. For instance,

suppose we simulate a theme park with 10 operating hours and set a 5-min interval.

The size of the row indexes is 10 ∗ 60/5 = 120. The column indexes are the list of

facilities’ IDs. The value in each cell represents the number of visitors appearing in

the respective POI at that time step.

Next, we discuss the implementation of the main algorithms for SCAIRv2.

6.3 Initialising the State Encoder

We initialize the state encoder with zero values and conduct one update step. Al-

gorithm 4 shows an overview of the procedure to initialize the state encoder in

SCAIRv2.

Line 2 to 5. The algorithm takes in the time-step interval Interval, max simu-

lation time MaxTime, i.e., the operating hours of the simulated park, and the IDs
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Algorithm 4: SCAIRv2 - InitSE()

Data: Interval,MaxT ime, PoiIDs
Result: SE
begin

RowIdx = [];
for idx ∈ range(1,MaxT ime/Interval) do

RowIdx.append(idx)
end
SE = DataFrame(data = 0., index = RowIdx, columns = PoiIDs);
SE = UpdateSE(SE);

end

of all POIs PoiIDs. We use uniformly spaced time steps as row headers and the

POIs as column headers to generate the state encoder.

Line 6 to 7. The algorithm creates the state encoder and initializes it with zeros

in all cells. Subsequently, it calls algorithm 5 to update the initial state encoder with

the first arrival. At the end of the algorithm, it outputs the initial state encoder.

6.4 Updating the State Encoder

Algorithm 5 describes the procedure of updating the state encoder for one time

step. It takes in a state encoder SE, the current time step CurrT imeStep, and a

path Path, and outputs the updated state encoder SEUpdated.

Algorithm 5: SCAIRv2 - UpdateSE()

Data: SE,CurrT imeStep, Path
Result: SEUpdated
begin

Step = CurrentT imeStep;
while Path do

POI = Path.pop(0);
while POI.Dur do

SE[POI, Step]+ = 1;
Step+ = 1;
POI.Dur− = SE.Interval;

end
SE[POI, Step]− = 1;

end
end

Line 3. The procedure loops through every POI in the given path and updates

the state encoder accordingly.

Line 5 to 10. We add one count as the person stays in the POI and reduce one

when he or she leaves. Note that POI.Dur is the total time duration the visitor

spends in the POI, and SE.Interval is the time step given when initializing the

state encoder.

6.5 Finding Optimal Path

Algorithm 6 describes SCAIRv2’s search algorithm of an optimal path at a given

state. It requires inputs of a state encoder SE, an initial POI InitialPOI, and the

maximum time constraint MaxTime, and outputs an optimal path OptPath.

Line 3 and 15. The algorithm iteratively finds the optimal path until it exhausts

the MaxTime limit.
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Algorithm 6: SCAIRv2 - FindOptPath()

Data: SE, InitialPOI,MaxTime
Result: OptPath
begin

OptPath = [];
while (MaxTime ¿ 0) do

NextPOI = Null;
OptDur = Null;
OptUti = −1;
for POI in SE.ColumnIDs do

CurrPoiDur = Q(POI) +Dur(POI) + Trav(InitPOI, POI);
CurrPoiUti = Pop(POI)/CurrPoiDur;
if OptUti ¡ CurrPoiUti then

NextPOI = POI;
OptDur = CurrPoiDur;
OptUti = CurrPoiUti;

end
MaxTime− = OptDur;

end
OptPath.append(NextPOI);

end
end

Line 8 and 9. The duration of the POI CurrPoiDur is calculated by summing

up the expected queuing time Q(POI), the duration of visit Dur(POI), and the

travel time from initial POI to the target POI Trav(InitPOI, POI). Note that the

queuing time requires information on the capacity and the current crowd of the POI,

which are not implicitly calculated in Q(POI). The utility of the POI CurrPoiUti

is calculated by dividing the popularity of the POI Pop(POI) by CurrPoiDur.

Refer to section 4.2 for the definitions and explanations of Q(POI), Dur(POI),

Trav(InitPOI, POI) and Pop(POI).

Line 17. Together with the POI IDs, we also append the properties of the POIs

to simplify computation for other algorithms.

6.6 Algorithmic Complexity Analysis

The state encoder records the crowd distribution for all POIs at any given time.

The encoder has a size of n by m, where n denodes the number of POIs and m

denotes the time intervals.

Theorem 3 The state encoding mechanism takes linear-time to update.

Proof The state encoding updates the encoder once per arrival. Each update takes

at most n * m steps. As m is a predefined parameter, we have the time complexity

of updating the state encoder as O(n).

Theorem 4 The pathfinding algorithm has a linear time complexity.

Proof SCAIRv2 takes one step to find the optimal path leveraging the state en-

coder, which records the crowd distribution for all POIs. Specifically, SCAIRv2

scans through the state encoder of size n by m, where n denotes the number of

POIs and m is a constant that denotes the number of time steps. Subsequently,
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for each of the selected POIs, SCAIRv2 updates the state encoder on the crowd

distribution, which takes m steps.

Therefore, we conclude that the time complexity of pathfinding algorithm is:

n ∗m+m = O(n) (10)

Theorem 5 SCAIRv2 has a linear-time space complexity.

Proof For space complexity, SCAIRv2 stores a 2D array with size n by m, where

m is a constant. Therefore, the space complexity of SCAIRv2 is:

n ∗m = O(n) (11)

7 Experiments
This section describes our dataset, evaluation process, and baselines.

7.1 Dataset

We conduct our experiments using a publicly available theme park dataset from [6].

This dataset is based on more than 655k geo-tagged photos from Flickr and is the

first that includes the queuing time distribution of attractions in various Disney

theme parks in the United States.

The dataset contains the POIs, user visits, distance, and popularity information

of five theme parks data, namely Disney Hollywood Studios (DisHolly), EPCOT

(Epcot), California Adventure (CalAdv), Magic Kingdom (MagicK), and Disney

Land (Disland).

For SCAIRv1, we perform our experiments and evaluation using the dataset of

user visits in Epcot and DisHolly, which contain 17 and 13 POIs, respectively.

As SCAIRv2 substantially reduces the complexity of the earlier version of SCAIR,

we evaluate it on two larger theme parks, namely, CalAdv and MagicK, in our

experiments to demonstrate this aspect. These two parks have 25 and 27 POIs,

respectively, which is 45% to 108% larger than DisHolly and Epcot.

While conducting the experiments, we realized some limitations in the original

dataset. For instance, as it was released in 2017, some of the information, such as

popularity, duration, and capacity, are not updated in a timely manner. Hence,

some information provided in the dataset is not up to date, such as the capacity

and duration of the facilities. This may be due to changes in the facilities over time.

To overcome the limitations, we leverage publicly available data sources, such

as theme parks websites, Google Maps, and Wikipedia, to update the information

dataset and add new features, such as average ratings and number of reviews, to the

dataset to better reflect the popularity of the facilities. The newly updated dataset

is publicly available at https://github.com/junhua/SCAIR.
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7.2 Experimental Parameters

In our experiments, we empirically evaluate our proposed SCAIR algorithm across a

comprehensive range of settings to thoroughly assess its performance robustness and

scalability. The evaluation leverages two critical experimental parameters, which are

the agent arrival interval λ and the simulation time budget T .

Specifically, the arrival interval λ defines the mean inter-arrival duration between

consecutive agents entering the system, measured in minutes. We explored a broad

range of λ values to reflect diverse real-world visitor arrival scenarios, varying from

high-density conditions (λ ∈ {0.01, 0.02, . . . , 0.09}) to relatively sparse arrival sce-

narios (λ ∈ {0.1, 0.2, . . . , 1.0}). This range allows us to rigorously test the per-

formance and generalizability of SCAIR under both highly congested and lightly

trafficked contexts.

For the simulation time budget T , we considered durations ranging from short,

constrained visits to extended, leisurely visits. Specifically, we varied the total avail-

able visitor time from 60 to 360 minutes, incremented at regular intervals of 30 min-

utes (T ∈ {60, 90, 120, . . . , 360}). This variety of time budgets helps us validate the

capability of the algorithm in managing itinerary recommendations under differing

visitor time constraints.

These experimental configurations were carefully determined based on empirical

insights and preliminary tests, ensuring that the evaluated scenarios align closely

with realistic use-cases. All evaluations were conducted over multiple runs to capture

variability, and the performance results presented in subsequent sections reflect

averaged metrics over all λ and T settings, providing robust and representative

insights into the performance characteristics of our proposed methodology.

7.3 Evaluation and Baselines

We compare our proposed SCAIR algorithm against three competitive and realistic

baselines. The first two algorithms are based on visitors’ intuitive strategies in real-

life [2], while the third is a greedy algorithm used in [14]. In summary, the three

baseline algorithms are:

1 Distance Optimization (denoted as DisOp) [2]. An iterative algorithm where

agents always choose the facility with the shortest distance to the currently

chosen one.

2 Popularity Optimization (denoted as PopOp) [2]. An iterative algorithm where

agents always choose the next most popular facility within the specified dis-

tance constraint from the current facility.

3 Popularity over Distance Optimization (denoted as PodOp) [14]. An iterative

greedy approach models utility as the popularity of the POI normalized by the

distance from the current one and iteratively chose the POI with the highest

utility.

Similar to many itinerary recommendation works [20, 6], we adopt the following

evaluation metrics:

1 Average Popularity of Itinerary (denoted as AvgPop). Defined as the average

popularity of all attractions recommended in the itineraries.

2 Expected Queuing Time per Visitor (denoted as AvgQt). Defined as the av-

erage queuing time that each visitor spends waiting for attractions in the

recommended itinerary.
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3 Expected Utility (denoted as Uty). Defined as the average utility score for all

users based on the recommended itineraries.

Figure 2 The plots show the performance of SCAIRv2 over four theme parks data. It shows that
both of the queuing times and utility change with respect to simulation time T . We observe that
SCAIRv2’s queuing time is consistently and significantly lower than the baselines, and SCAIRv2’s
utility outperforms all the baselines in a majority of cases.

8 Results and Discussion

Figure 2 shows the experimental results of our proposed SCAIR algorithm compared

to the three baseline algorithms. The x-axis indicates the time budget of visits, and

the y-axis indicates the queuing time, popularity, and utility. To examine the effects

of different user arrival frequencies, multiple experiments are conducted based on

different arrival intervals λ, i.e., from 0.01 to 0.1 with a step size of 0.01 and from

0.1 to 1.0 with a step size of 0.1. The values in the graph are averaged across all λ.

Table 1 Queuing Time Ratio (Smaller values are better)

Disney Hollywood Epcot Theme Park

(DisHolly) (Epcot)

DisOp 0.045± 0.221 0.076± 0.414

PopOp 0.046± 0.215 0.092± 0.368

PodOp 0.045± 0.211 0.092± 0.368

SCAIR 0.003±0.010 0.016±0.006

8.1 Queuing Time

In general, we observe that SCAIR outperforms the queuing time and utility base-

lines in the four theme parks. SCAIR is able to maintain a low queuing time with

different time budgets, while the baseline’s queuing time increases with the growth

of the time budget. The observation is consistent for both theme parks. Table 1

shows the ratio of queuing time and time budget of visitors. SCAIR produces a

queuing time ratio that is 78.9% to 93.4% shorter than that of the baselines across

both DisHolly and Epcot theme parks.
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8.2 Utility

For Utility, SCAIR outperforms all baselines consistently across all-time budgets for

four theme parks. The main contributing factor to this result is the much improved

queuing time performance that SCAIR can achieve compared to the various base-

lines. In turn, the reduced queuing time leads to a higher utility score as tourists

can utilize more of their time budget in visiting attractions rather than spending

excessive time queuing.

8.3 Limitations and Trade-offs

Our proposed SCAIR algorithm has been shown to perform well in terms of queuing

time and utility in the general scenario. However, there are also various limitations

that may affect its performance due to unique scenarios. Firstly, there is an implicit

trade-off between a globally-fair utility versus personal utility, i.e., there may be in-

dividuals with their interest preferences being less aligned, although the global pop-

ulation benefits overall. Secondly, there may be the need for additional incentives to

ensure that there is a global adherence or adoption of the recommended itineraries,

which may result in additional costs for the facility/service providers. Lastly, differ-

ent definitions of utility may be harder to model accurately, e.g., changing interest

preferences over time, which may in turn affect the effectiveness of SCAIR.

9 Conclusion and Future Work
We now summarize the main findings of our work and discuss some possible direc-

tions for future research.

9.1 Conclusion and Discussion

Traditional itinerary recommendation methods and many prior works primarily tar-

get individual users, assuming isolated decision-making from the individual traveler

perspective. However, this assumption breaks down in real-world environments,

such as theme parks, where multiple users simultaneously follow similar recom-

mendations. This leads to the well-known Selfish Routing problem, where agents

pursuing individual utility inadvertently reduce overall system efficiency. For exam-

ple, when all travelers are recommended the same POIs with a short queuing time

based on historical data, those POIs then become congested and suffer from a long

queuing time.

In this paper, we introduced the Strategic and Crowd-Aware Itinerary Recommen-

dation (SCAIR) algorithm, which formulates the itinerary recommendation task as

a social welfare optimization problem. By explicitly modeling crowd behavior and

inter-agent interactions, SCAIR shifts from a user-centric to a system-level perspec-

tive. We address the limitations of static, single-agent models by leveraging Markov

Decision Processes and introducing a novel state encoding mechanism that supports

efficient real-time itinerary planning. Drawing from game-theoretic principles and

Markov Decision Processes, SCAIR explicitly models the impact of agent interac-

tions and crowd dynamics on route quality. This formulation not only aligns with

foundational concepts such as the Price of Anarchy and Braess’s Paradox, but also

provides a tractable solution to these coordination failures in dynamic environments.

Our complexity analysis demonstrates that the enhanced algorithm, SCAIR,

significantly reduces computational overhead, enabling linear-time updates and
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pathfinding. Experimental results across four real-world theme park datasets show

that SCAIR consistently outperforms established baselines in both queuing time re-

duction and overall utility, validating the importance of incorporating crowd-aware

mechanisms.

Importantly, the benefits of SCAIR remain robust across varying arrival inter-

vals and time budgets, illustrating its adaptability to dynamic visitor patterns.

Moreover, we updated and extended a public dataset to better support research on

scalable, real-time itinerary recommendation systems. This enriched dataset, com-

bined with our proposed algorithm, potentially opens up future research in socially

optimal path planning.

9.2 Future Work

Building on the current work, there are several promising directions that could be

explored.

Firstly, we plan to extend the current formulation into a multi-objective opti-

mization framework. In contrast to optimizing a single utility function, we aim to

separately model and balance multiple objectives, such as minimizing queuing time

and maximizing attraction popularity, based on the principle of Pareto efficiency.

This will allow us to uncover trade-offs between competing goals and provide more

balanced itinerary recommendations that reflect varied user and system-level prefer-

ences. Additionally, we will explore alternative formulations of the utility function

to better capture visitor satisfaction and system performance under different as-

sumptions.

Secondly, to further improve simulation efficiency and scalability, we will explore

advanced metaheuristic and scheduling algorithms from related domains. These

include but are not limited to the Adaptive Genetic Algorithm[24], Tabu Search[25],

Variable Neighborhood Search (VNS)[26], Simulated Annealing[27], and Branch-

and-Cut methods [28]. Integrating these solvers could improve runtime and solution

quality in larger and more complex theme park environments.

Thirdly, we see value in extending our strategic recommendation framework to

other game-theoretic applications, such as knowledge acquisition [62, 63], crisis man-

agement [39, 64], and career path planning [65, 66]. These domains also involve

multi-agent coordination and resource constraints, making them a natural adapta-

tion of our proposed algorithm for strategic, crowd-aware recommendation models.

Lastly, we intend to develop more realistic behavioral models to simulate visi-

tor decision-making. Future versions of our simulator will incorporate park-specific

topology features, such as entrance and exit locations, to more accurately represent

spatial constraints. We also plan to explore probabilistic path choice models, us-

ing softmax-based selections instead of deterministic one-hot assignments, to better

represent the stochastic and uncertain nature of human navigation.
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