Data-free Functional Projection of Large Language
Models onto Social Media Tagging Domain

Wenchuan Mul0009—-0007—2395-9731] ;14 Kwan Hui Lim[0000—0002—4569—-0901]

Singapore University of Technology and Design, Singapore
{wenchuan_mu, kwanhui_lim}@sutd.edu.sg

Abstract. Text tagging and recommendation are crucial tasks in social media ap-
plications. Specific and personalised tagging algorithms are in demand alongside
the growing diversity of user needs, content creators, and social media companies.
However, the rapid development of these algorithms is hindered by the scarcity
of relevant data and the fast-changing nature of topics. Large language models
(LLMs) offer a flexible solution with zero-shot classification capability, yet their
substantial computational demands make them impractical for frequent, instanta-
neous tagging. While existing distillation methods aim to address this, they often
require additional fine-tuning data or auxiliary data generators. Note that there ex-
ists a simple, yet easily overlooked fact that together with a well-formed prompt,
a well-trained LLM already contains all the necessary information. In this work,
we propose a novel approach that directly extracts a lightweight model from an
LLM when we are already given a specific, functional prompt. Using functional
projection, we project LLM’s capabilities onto a targeted domain. This extraction
process relies solely on numerical float-point data, and our experimental results
demonstrate that this method provides a timely and accurate solution to the fast-
evolving problem of social media tagging.

Keywords: Social media - Orthogonal projection - Large language model.

1 Introduction

Text tagging and recommendation systems are increasingly essential in social media,
with over 5.16 billiorﬂ active social media users globally in 2024, representing around
59.3% of the world’s population. The fast growth and diversification of user needs,
content creators, and social media companies calls for personalised tagging algorithms.
However, the development of these algorithms faces significant challenges, primarily
due to the scarcity of relevant data and the rapid evolution of social media topics. In
particular, social platforms like Faceboolﬂ which boasts over 3.15 billion monthly ac-
tive users, and Instagram, with 1.68 billion, highlight the scale at which these systems
must operate. Furthermore, the average social media user now spends approximately 2
hours and 20 minutes per day on these platform highlighting the need for efficient
tagging solutions to match the pace of user engagement and content production.

! Priori Data
2 DataReportal - Global Digital Insights
3/Adam Connell

https://prioridata.com/data/social-media-usage/
https://datareportal.com/reports/digital-2024-deep-dive-5-billion-social-media-users
https://adamconnell.me/social-media-statistics/

2 Mu and Lim

As arecent panacea, large language models (LLMs) can effectively tag texts given a
task-specific prompt [L1]. While LLMs generalise human language and have zero-shot
capability, they require significant computational resources and time, making them im-
practical for frequent, instantaneous tagging. For instance, GPT-MoE, which boasts 1.8
trillion parametersﬂ and Llama-2 [21]], with variants ranging from 7 billion to 70 billion
parameters, are notorious for their extensive computational and memory requirements.
These models process large amounts of data, making them powerful but impractical
for tasks requiring frequent, real-time responses, such as social media text tagging [[11]].
Additionally, LLMs are challenging to deploy efficiently in real-time environments. For
instance, deploying LLMs often asks for engineering methods like tensor parallelism
and model sharding to handle their heavy computational load, which further increases
infrastructure costs [5]. Thus, while LLMs are capable of social media tagging, Their
high resource demands highlight the need for more efficient options in applications
where real-time performance is essential, like social media tagging [25]].

To address this problem, we look at the following task: given a specific applica-
tion and an LLM that performs well on it, we compress the model to a smaller and
more efficient architecture without compromising performance. There are two wildly
used categories: model pruning [[14] and knowledge distillation [6]]. While model prun-
ing reduces the model size by removing unnecessary components, it is constrained by
the original model’s architecture [28]]. In contrast, knowledge distillation offers a more
flexible solution by transferring the knowledge from a large teacher model—or an en-
semble of models—to a smaller student model [9]. This process involves aligning the
student’s predictions or internal activation with those of the teacher. Knowledge distil-
lation enables a shift in model architecture during compression. However, most existing
distillation methods rely on access to training data, which poses significant challenges in
data-scarce scenarios [2l]. Some researchers have attempted to overcome this limitation
using synthetic data, but this approach can be computationally intensive and contradict
the goals of distillation [27]].

In this study, we address the problem of text data dependency. We propose to extract
a lightweight model directly from an LLM, using a given specific prompt as the projec-
tion subspace. The rationale is that together with a well-formed prompt, a well-trained
LLM already contains all the necessary information. Our method leverages the orthog-
onal projection of functions in Hilbert space, a widely studied and applied concept
in functional analysis. The scalar coefficient in functional projection suggests includ-
ing a learnable parameter in training, which stabilises the convergence. Furthermore,
to completely set the fine-tuning process free from text data dependency, we fine-tune
the lightweight classifier with random vector inputs and reuse the LLM embedding
layer in the lightweight classifier. The extraction process relies solely on numerical
float-point data and effectively projects the capabilities of the LLM onto a specific
classification domain, e.g., social media tagging. Experimental results show that our
method efficiently produces accurate classifiers, which can potentially contribute to the
fast-evolving social media tagging problem. Our code and model are made publicly
available at https://github.com/cestwc/llm-projection.

* NVIDIA Blackwell: A new platform to power trillion parameter LLMs

https://github.com/cestwc/llm-projection
https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-for-trillion-parameter-large-language-models/

Data-free Functional Projection of LLM 3
2 Preliminary and Problem Definition

In this section, we review the relevant background of this study, including the fun-
damentals of language models and text tagging. We also revisit functional analysis,
highlighting its relevance to classifiers. After that, we define our research problem.

2.1 Autoregressive Language Models

Autoregressive language models predict the next token in a sequence based on the to-
kens that have already been observed. These models are foundational in natural lan-
guage processing tasks such as text generation, translation, and completion. The core
idea behind autoregressive models is that the joint probability of a sequence of tokens
can be factorised into a product of conditional probabilities, each conditioned on the
preceding tokens. Formally, given a sequence of tokens (1, %2, . . ., zT), where z; rep-
resents the token at time step t, the joint probability of the entire sequence can be ex-
pressed as

T
P($1,$2,.-.,$T):HP($t|-T1,x2,...,l‘t_1), (1)

t=1
where T is the sequence length and P(x; | @1, 22,...,2:—1) denotes the conditional

probability of the token x; given all previous tokens in the sequence. This factorisation
is the key mechanism by which autoregressive models generate sequences one token at
a time, ensuring that each token is generated in the context of all preceding tokens.

The objective of training an autoregressive language model is to maximise the likeli-
hood of the training data under the model. Given a set of sequences { (1, ..., z7) @},
where N is the number of sequences, the training objective can be formulated as maxi-
mizing the log-likelihood:

N T
1 - i D) (i i
NZZlogP(xg)|x§),xé),...,x§_)l;9) (2)

i=1 t=1

where 0 represents the parameters of the model, and T; is the length of the i-th sequence.
Autoregressive language models are typically implemented using recurrent neural net-
works, or, more recently, transformer architectures [23].

Once trained, autoregressive language models generate sequences by sampling to-
kens sequentially from the conditional distributions. At each time step ¢, the model
samples a token x; from the distribution P(z; | 21,2, ..., 2:—1). This process contin-
ues until a special end-of-sequence token is generated or a predefined maximum length
is reached. Formally, the sampling process can be expressed as

thP(xt |.’E1,l’2,...,$t,1;9). (3)
This sampling procedure, while effective, can sometimes lead to issues such as repeti-

tion or incoherence in the generated text, which motivates the exploration of alternative
sampling strategies, such as top-k sampling or nucleus sampling.

4 Mu and Lim

2.2 Large Language Models

Large Language Models (LLMs) have become a central component in natural language
processing and artificial intelligence due to their ability to understand and generate
human language with remarkable fluency and accuracy. These models, often based on
deep neural networks, are trained on broad corpora of text data to capture the intricate
patterns and structures within language. The mathematical foundation and the scale at
which these models operate distinguish them from earlier language models.

Large language models leverage autoregressive architectures. In particular, the trans-
former model [23] is capable of modelling long-range dependencies through self-attention
mechanisms. The core operation of the transformer is the self-attention mechanism,
where attention scores weigh the importance of different tokens in a sequence relative
to each other as

Attention(Q, K, V) = softmax (QKT) V. 4)
Y) m i

where @ (query), K (key), and V (value) are matrices derived from the input embed-
dings, and dj, is the dimensionality of the key vectors. Input embeddings convert dis-
crete tokens z; into a continuous vector space R?, where d is the embedding dimension.
The embeddings also preserve the positional information via positional encoding. The
softmax function ensures that the attention scores sum to one, effectively creating a
weighted average of the value vectors V.

“Large” language models are typically characterised by the number of parameters.
The number of parameters ¢ in a model directly correlates with the model’s capacity to
learn and represent complex patterns in language. For instance, GPT-3 has 175 billions
of parameters. Scaling laws in LLMs suggest that performance improves predictably as
the model size, dataset size, and computational resources increase [[7]].

2.3 Projection of a Function

The projection of a function onto an axis is a fundamental concept in both multivariable
calculus and functional analysis. This operation reduces function dimensionality along
a specific direction or axis.

Consider a function f : R? — R defined over d-dimensional space. The function
f can be written as f(u) = f(u1,us,...,uq), where & = (uq, us, ..., uq) is a vector
in RZ. The projection of f onto one of the coordinate axes, say the u,;-axis, involves
examining how f varies with respect to the variable u; while treating all other variables
as constants or integrating them out. Formally, the projection of f onto the u;-axis can
be expressed as a function g; : R — R" defined by

gj(uj):f(uik,uz,...,u;ffl,uj,ufﬂ,...,u;) (5)

where uf, u3,...,uj_q,uj,q, ..., uy are fixed constants. This form of projection re-
sults in a function g; that captures the behaviour of f along the u;-axis by isolating
the effect of u; while holding other variables constant. The projection of functions onto
axes is commonly used in visualising the structure of the data or analyzing specific
aspects of the signal.

Data-free Functional Projection of LLM 5

We may also project our function f onto another, typically used to find the best
approximation of f in the space spanned by another function (or set of functions). This
is often done by minimizing the difference (error) between the two functions in some
vector space. The inner product of two functions f(u) and g(u) can be expressed as
follows, where where {2 is the interval over which the functions are defined,

(f.9) = /Q f(u)g(u)du. ©)

A scalar coefficient ¢ can be found such that Projected(f)(u) = ¢ - g(u). The coeffi-
cient c is determined by Equation (7). An intuitive example illustrating the concept of
function projection is presented below (Example|T).

(f,9)
(9.9)

(N

Example 1. Projecting u? onto u over the interval [0, 1] will give us %u, ie,c= %.

Function projection onto subspaces is widely applied in optimisation and machine
learning. Typical uses include reducing the complexity of the objective function or con-
straints and projecting data onto the principal subspace that captures the most vari-
ance [24]. In the context of large models, projecting functions onto subspaces can help
in regularisation, feature selection, and the interpretation of model behaviour.

2.4 Problem Definition: Projecting a Large Language Model to a Specific
Classification Task

This work studies how to project a sophisticated large language model onto a specific
domain. Theoretically, a well-trained large language model contains all the informa-
tion used to make a domain-specific classification (suppose its performance is good
enough). Therefore, we are probably able to avoid the traditional compressing methods
like distillation which requires at least some unlabelled text data to fine-tune the student
model. In this study, we place the model itself in the centre of our methodology, and try
to find its projections.

3 Projecting Large Language Model

In the following, we present the function projection of large language models. Specifi-
cally, we first formulate how a large model can be projected onto a specific classification
domain with the coefficient in Equation (7). Then, we show the joint optimisation of the
coefficient and the lightweight model in the subspace.

3.1 Functional Projection with Coefficient

Equation (3) suggests that the discrete output tokens of an autoregressive language
model follow a conditional probability. It observes all input tokens and predicts the

6 Mu and Lim

next one. Since we use an autoregressive model for classification, it is fair to con-
sider that this sampling process only occurs once, no matter whether an end token is
produced. Formally, given an input sequence (z1,Z2,...,27) and prompt sequence
(z1,x2,...,27), an autoregressive classification function is formulated as

fT(.’Ill,ZL‘Q, sy TT T (T 41) 5 (T 42) 5 - - - 7$(T’+T+1)) (8)

= P(y | mlax27"'7xT'ax(T’+l)7x(T’+2)a"'ax(T’+T+1);0) .

Next, if a fixed prompt sequence is given, i.e., (x7,25,..., %), then the first 7"
input tokens of the function f are fixed constants. According to Equation , and

9@ (1), (T 42)5 - - o T(TI 4T 1)) ©)

= f($1<,$;, ce ,.Z‘;«/,J)f_l,x(T/+1), :Z,‘(T/Jrz), ce ,x(T/+T+1)).
Intuitively, we give an example taking sentiment analysis as this specific domain. Sup-
pose we would like to classify the positive/negative sentiment from IMDB movie re-
views [[15)]. The simplistic method is to optimise a classifier using the training set in
IMDB. However, now we consider the case if we do not have access to this (or any)
training set for this task. We further consider that we have access to some well-trained
large language models like Llama-2 [21] and pre-know that a prompt like Example [2]
tailors large language models to make classifications in this task accurately.

Example 2. Ts the sentiment of this movie review positive or negative?

If we use a simple word tokenisation, the prompt in Example [2] has a sequence length
T’ = 11. Function g thus treats these 11 tokens as fixed constants, and the mapping is
from the movie review space (to prediction space) without the prompt in front.

Although g is a projection of f in a specific direction, adding this fixed-value
domain-specific prompt does not effectively simplify the original large model f. Thus,
let h denote our potential lightweight classifier, and have the same mapping space as
g. Next, we project g onto h by calculating the inner products, as captured in Equa-
tion (10).

>

o (gh)
Projected(g) = -=——=h 10
jected(g) (h R (10)
Further, let the input domain of § and h be distinct (but potentially very dense and
infinitely many) inputs. Equation (I0) can be expressed as follows.

Projected(g) (I(T/+1), - 7x(T/+T+1))
(9:h)
= — h ’ o e ’
<h, > (x(T +1)» » T(T +T+1)) (11)
>iJ ((QT(T'H), - -)(i)) h ((ﬂf(T'H), - -)(i))

= = ” = v BI ’ yese
S b (@) OV (@), -)@) ()

Till here, we may calculate the projection of g from Equation (TT) because each term
is straightforward to compute. Practically, as the number of inputs increases, the coef-
ficient (fraction in Equation (TT)) likely converges. Hence, our next step is to ensure or
make this coefficient large enough, meaning that the angle between g and h is small.

Data-free Functional Projection of LLM 7

Algorithm 1 Joint Optimisation

1: Initialise: 6 < Giniiar, ¢ < 5,7 < learning rate

2: for each input sequence (-T(T’+1)7 e 75C(T/+T+1)) “ do
= (@) 3((ear iy e prin))
33 JO,c) >3 ((:E(T/_H), S T(TATH))) log (——— : O)
eh((2err iy r i) i0)
4 6« 0—n-VaJ(0,c)
50 cec—n-2J0,0)
6: end for
7: Return: Optimised parameters 6 and coefficient ¢

3.2 Joint Optimisation of the Coefficient and Lightweight Model

It is still challenging to ensure that the coefficient is close to 1. To this end, the upcoming
step is to optimise the lightweight model to decrease the angle between the two models.
We present how a trainable coefficient ¢ could help this optimisation.

Equation (and its preceding paragraph) suggests that the function projection
(Projected(g) here) is proportional to the reference function (h here). Vice versa, h is
proportional to Projected(g) with a coefficient <. Moreover, this <+ Projected(g) is the
‘closest” function to g. This is formally captured in Theorem|I] and we may again refer
to Example [I]to help understanding.

Theorem 1. Let G be a Hilbert space and H a closed subspace of G. For every element
g in G, there exists a unique element h* in H such that g — h* is orthogonal to every
element in H. This element h* is called the orthogonal projection of g onto H, and it
satisfies
h* — g|| = mi — hl|. 12
1h* = gll = min [lg — A (12)

Furthermore, the orthogonality condition implies for all h € H, (h — g,h*) = 0.
Proof. Detailed proof of Theoremﬂ]can be found in reference [[10/18]].

Theorem suggests using ¢ - h to match § during training. This drives the optimisa-
tion of A to focus on minimising the angle rather than the scale difference. The value of
c also monitors the convergence of h. Furthermore, this trainable coefficient is simple
but not trivial in the convergence, and a related example is the soft switch of copying
probability in pointer-generator [20]. The training is briefly presented in Section [3.2]
and advanced optimisers, losses, and weighting hyperparameters may be applied from
a practice perspective. For instance, a loss like —c? may be used to properly accelerate
the convergence.

Random Sampling in Embedding Space Equation (II)) captures the calculation for
functional projection of a large language model. However, it does not address the chal-
lenge of working with unlabelled text data during fine-tuning. Each sequence. Each
sequence ($(T/+1), e 733(T/+T+1))(i) is inherently a text string, e.g., a movie review.
Our motivation is that the large model should be effective even without access to any

8 Mu and Lim

%D |:|Tnp,
Classification Layer Classification Layer
Output
N I I O I Y I N N I I | o o
R i |

Token :

Embeddings :
A 5 }

Positional [T [CIJ [CI1

Embeddings 0 0 1
Token e e e e s 4o oo !] e o e s
Embeddings Float points from
Input X ‘ ’ X ‘ ’ X ‘ ’ ‘ ’x ’ ‘ ’x ’ ‘ Random Distribution
Sequence 0 1 2 | e || e T/+1 T'42 | e
classify if related | like
(a) Pre-trained large language model with zero-shot predicting (b) Lightweight model

Fig. 1: A lightweight classifier can be fine-tuned without text data. The large language
model is directly projected to the lightweight classifier in the embedding space. Here in
the fine-tuning, random token embeddings are randomly sampled as input (blue colour)
whereas the prompt embeddings (including the separator), i.e., from x to x7 are fixed
(yellow colour). Positional embeddings are also fixed. From the last layer, logits or
probability prediction from the large language model is used to train the lightweight
classifier, and only necessary labels (pink colour) are used. The key difference from tra-
ditional distillation is that the presented process does not require text data, not even syn-
thetic ones, improving the efficiency and robustness of the learned lightweight model.

fine-tuning text data, including synthetic ones. This raises a crucial question: how can
we compute Equation (TT)) in the absence of text sequences?

To handle this problem, we propose to leverage the model’s intrinsic capabilities by
exploiting embeddings directly. Instead of relying on actual or synthetic text sequences,
we can utilise random vectors in the embedding space. Here, random vectors do not
mean to capture any semantic information. The prediction given by the large language
model does not mean to tell whether it is indeed a "positive movie review", either. In-
stead, the random vector input and the prediction jointly model the inherent behaviour
of the neural networks in between. Formally, let e(z(;)) denote the token embedding
function that converts x; to a d-dimensional embedding vector, e;. Then, g can be de-
composed into a function g and function e as Equation (T3).

g (l'(T’+1)a$(T’+2)7 e ,ﬂf(T'+T+1)) (13)
=49 (e(fU(T'H)), €($(T'+2))’) e(lf(T'+T+1)))
77/ X (T , L(r ye e (T
(@), T(rr42) (T +T+1)) 14

=h (e(I(T'H))a e((ri42)),- - 6(9U(T'+T+1)))

Data-free Functional Projection of LLM 9

Similarly, h can be decomposed into & and e as shown in Equation . Next,
instead of obtaining embedding vectors from tokens using e function, we use random d-
dimensional vectors €™ ~ Uniform([0, 1]¢). We can then replace x; in Equation
with e, g with g, and h with h to get the new form of functional projection. The same
replacement can be done to Section[3.2]to enable text-free fine-tuning. An illustration of
this approach is shown in Figure [T} A constraint is that the lightweight classifier must
share the same embedding layer as the large language model, otherwise embeddings
will be mismatched.

4 Experiment

In the following, we present our experiment to verify the behaviour of the proposed
method. These analyses aim to answer the following research questions.

1. Does the angle between large and lightweight models decrease during training?
What is the value that it converges to?

2. How is the classification performance of this optimised lightweight classifier? How
is its accuracy compared with other training approaches?

3. How efficient is the proposed method in obtaining a lightweight domain-specific
classifier, in terms of data, time, and computation resource?

4.1 RQ1: The Changes in Angle Between Large and Lightweight Models

Although we project the large language model onto a lightweight one, the lightweight
model continuously changes during training. Consequently, the angle between the two
models, denoted as «, also changes over time. This angle can be expressed as

o = arccos ({9, 7)) . (15)

gl 17l

We use this angle as an indicator of our training performance. The ideal case is that If
g and h are collinear, i.e., & = 0. Since we already know the expression of coefficient ¢
from Equation , we could derive « from c as

Qv = arccos (C”h> . (16)
gl

The norm of h can be estimated by the square root of (h, k), and it is similar to com-
puting the norm of g. We can pre-compute ||g|| as it is a fixed value. We compute ||A||
at individual training states.

Setup To answer this question, we instantiate the LLM-function f using Llama-2 [21].
The specific domain is in movie review sentiment analysis, and the prompt is in Exam-
ple[2] Thus, in function g, input embeddings starting from the 12th take random vectors
in d = 2048 dimension. For the prediction, we take the first output token’s logit values,
i.e., the value without the softmax function. among the 32,000 logit values, we take 10

10 Mu and Lim

Coefficient ¢ 1.5 Norm || k||
Angle « in radian
200

1
100 0.5
0.2
0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Training Steps .10° Training Steps .10°
(a) Coefficient ¢ (b) Norm ||h|| and Angle

Fig.2: The change of coefficient ¢, norm ||h||, and the angle between g and h.

of them corresponding to ‘Positive’, ‘Negative’, ‘Favorable’, ‘Unfavorable’, ‘Good’,
‘Bad’, ‘Excellent’, ‘Poor’, ‘Great’, and ‘Terrible’. We then take the maximum logit
value among the five positive labels, and also the maximum logit value among the five
negative labels. After that, a softmax function applies on the two maximum logit values
to get respective probability. The positive class probability is then taken as the function
value of g. Specifically, the Llama-2 is the Llama-2-7b model from HuggingfaceE]

We instantiate the lightweight classification function / using RoBERTa-Large [13].
This is a BERT-like [4] model with a 2048 embedding size, 24 layers, 16 attention
heads, and 355 million parameters, which is an improved version of BERT. RoBERTa-
Large is 19.7 times smaller than the LLaMA-2 7B model, but sophisticated enough in
this movie review sentiment analysis task. Here, h is fine-tuned for 100,000 steps and
in every 1,000 steps, we collect the values of ¢ and ||h]|.

Result The norm of the large model converges to || g|| = 0.9296, we divide c || k|| by this
constant value to get the cosine value of «.. The result is presented in Figure[2] Overall,
Figure 2b]shows that the angle does decrease over training, indicating the effectiveness
of our approach. We observe that the lightweight classifier & still has about 0.4-radian
angle when compared with g, indicating the challenge of a complete alignment. Fig-
ure2blalso shows that the norm ||h|| is steadily small in the first 60,000 training steps,
and starts growing after that. Almost at the same time point, we observe the significant
oscillation in the value of coefficient c¢. This likely implies that when the norm | A||
somehow changes due to loss reduction, the timely change in coefficient ¢ can well
regularise it. Additionally, we find that while angle o decreases because of effective
training, the coefficient ¢ and norm || || do not necessarily converge.

4.2 RQ2: Accuracy of Our Lightweight Classifier

Apart from an intrinsic comparison against the original large model g, we would also
like to evaluate the performance of our lightweight classifier on benchmarks.

3 |meta-llama/Llama-2-7b

https://huggingface.co/meta-llama/Llama-2-7b

Data-free Functional Projection of LLM 11

Table 1: Macro-F1 (%) and Accuracy Score (%) of classification models fine-tuned
(trained) using different approaches. Bold scores represent the highest in each category.

IMDB [15] AG’snews [26] Reddit [3

Approach ‘ Fl Acc. ‘ F1 Acc. ‘ Fl Acc.
Direct Training RoOBERTa 96.2 96.6 | 93.8 94.2 93.7 94.6
Distil Llama-2 89.0 89.0 | 936 936 | 917 918
Distil Llama-2 with DistilBERT 81.1 812|915 916 | 91.8 91.8
Distil Llama-2 with synthetic text 824 8241929 929 87.5 877
Our optimisation 87.6 87.6 | 93.1 93.1 924 92.6

Setup We take our fine-tuned model 4 and compose h using h and embedding function
e. Here, the embedding layer is an unchanged copy from Llama-2-7b. The benchmark-
ing dataset is the test set of IMDB movie reviews [[13]]. The IMDb movie review dataset
contains 50,000 reviews split equally into 25,000 for training and 25,000 for testing,
with each review labelled as either positive or negative. Each review consists of around
500 words. This dataset is commonly used for binary sentiment classification tasks, and
the state-of-the-art supervised methods achieve 96.6% test accuracy.

Several baseline approaches are of interest. 1) Directly fine-tuning the same archi-
tecture (RoBERTa-Large) on IMDB training set. 2) Knowledge distillation of Llama-
2-7b using the same architecture. 3) Knowledge distillation Llama-2-7b using some
distillation-favoured architecture, i.e., DistilBERT [19]]. 4) Knowledge distillation of
Llama-2-7b using the same architecture and with synthetic augmented texts [12]. Simi-
larly, we extend our experiment to another two tasks: AG’s news [26] and Reddit emo-
tion [3]]. We measure the macro-F1 score and accuracy for all approaches on all tasks.

Result Table[I|compares various approaches and shows that our optimised lightweight
classifier has a consistently higher accuracy and F1 score over other methods that do
not have access to original training texts. Specifically, the optimised model achieves
a Macro-F1 score of 87.6% and an accuracy of 87.6% on the IMDB dataset, with a
significant 5.2 percentage point higher than the data-limited baseline approach. A sim-
ilar trend is observed on the AG’s news and Reddit emotion tasks, with 0.2 and 4.9
percentage points higher than the data-limited baseline respectively.

On the other hand, although our method is designed for data-limited scenarios, it
demonstrates competitive performance (average accuracy 91.0% and Macro F1 91.1%)
against the conventional knowledge distillation method (average accuracy 91.4% and
Macro F1 91.4%) where data is available. We also observe that the best performance
always comes from directly trained models (average accuracy 95.1% and Macro F1
94.5%), indicating the improvement space of the proposed method.

4.3 RQ3: Efficiency

We analyse efficiency from the data and computation time perspective. We use the same
setup as in RQ2, but time (estimated using a single NVIDIA RTX 2080 Ti GPU) is only
counted on the IMDB classification task.

12 Mu and Lim

Table 2: Comparing data efficiency and time efficiency of various fine-tuning methods.

Approach ‘ Need data? ‘Data Preparing time ‘ Training time
Direct Training RoBERTa Need labelled data 0 < 1 hour
Distil Llama-2 Need data 10 £ 2 hours 2 hours
Distil Llama-2 with DistilBERT Need data 10 £ 2 hours 1.5 hours
Distil Llama-2 with synthetic text No 30 £ 2 hours 2 hours
Our optimisation No 7 &£ 2 hours 1.5 hours

Table |2 shows that the direct supervised training does not spend time in data prepa-
ration and has the fastest training time of under 1 hour, but it requires labelled data,
unlike our optimisation, which avoids this need and reduces data preparation time by
30% to 7 £ 2 hours while maintaining a relatively quick training time of 1.5 hours. In
contrast, conventional distillation methods, while effective, are less time-efficient, with
data preparation taking 10 £ 2 hours and training times ranging from 1.5 to 2 hours.
Distillation with synthetic text data is efficient from a data perspective, but significantly
time-consuming in data preparation, because LLM is used to generate data and then
generate labels. This leaves a great obstacle for rapid real-time text tagging. Overall,
our method offers the most balanced and efficient approach for data-limited scenarios.

5 Related Work

To mitigate the challenge given by the large size of LLM, there is also a growing in-
terest in smaller, more efficient models. For example, the GPT-3 Small model, with
only 2.7 billion parameters, manages to outperform much larger models in certain tasks
by optimizing its training data and utilizing innovative scaling techniques [1/16]]. This
trend towards smaller models, such as Zephyr 7B [22] and SOLAR 10.7B [8], aims to
maintain high performance while significantly reducing computational costs, making
these models more suitable for applications requiring rapid responses [17]].

6 Conclusion

This study shows that LLMs can be effectively projected onto specific domains through
functional projection without relying on traditional fine-tuning methods. Given any
prompt, we successfully extract a lightweight model that retains the LLM’s capabilities
while significantly reducing computational demands. Our experiments show that this
approach achieves competitive accuracy and efficiency in social media tagging tasks,
providing a viable solution for applications requiring real-time performance.

Acknowledgments. This research is supported in part by the Ministry of Education, Singapore,
under its Academic Research Fund Tier 2 (Award No. MOE-T2EP20123-0015). Any opinions,
findings and conclusions, or recommendations expressed in this material are those of the authors
and do not reflect the views of the Ministry of Education, Singapore.

Data-free Functional Projection of LLM 13

References

1.

10.

11.

12.

13.

14.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in
neural information processing systems 33, 1877-1901 (2020)

. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: 2019 IEEE/CVF

International Conference on Computer Vision (ICCV). pp. 4793-4801 (2019). https://doi.
org/10.1109/ICCV.2019.00489

. Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A., Nemade, G., Ravi, S.: GoEmotions:

A dataset of fine-grained emotions. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.)
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
pp. 4040—4054. Association for Computational Linguistics, Online (Jul 2020). https://doi.
org/10.18653/v1/2020.acl-main.372, https://aclanthology.org/2020.acl-main.372

. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional

transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers). pp. 4171-4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423| https://aclanthology.org/N19-1423

. Duan, J., Zhang, S., Wang, Z., Jiang, L., Qu, W.,, Hu, Q., Wang, G., Weng, Q., Yan, H.,

Zhang, X., et al.: Efficient training of large language models on distributed infrastructures:
A survey. arXiv preprint arXiv:2407.20018 (2024)

. Gou, J.,, Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Interna-

tional Journal of Computer Vision 129(6), 1789-1819 (Jun 2021). https://doi.org/10.1007/
s11263-021-01453-z

. Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Rad-

ford, A., Wu, J., Amodei, D.: Scaling laws for neural language models (2020)

. Kim, D., Park, C., Kim, S., Lee, W., Song, W., Kim, Y., Kim, H., Kim, Y., Lee, H., Kim,

J., Ahn, C., Yang, S., Lee, S., Park, H., Gim, G., Cha, M., Lee, H., Kim, S.: SOLAR 10.7b:
Scaling large language models with simple yet effective depth up-scaling (2023). https://doi.
org/10.48550/ARXIV.2312.15166

. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. In: Su, J., Duh, K., Carreras,

X. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. pp. 1317-1327. Association for Computational Linguistics, Austin, Texas (Nov
2016). https://doi.org/10.18653/v1/D16-1139, https://aclanthology.org/D16-1139

Kreyszig, E.: Introductory Functional Analysis with Applications, Wiley classics li-
brary, vol. 17. Wiley India Pvt. Limited (2007), https://books.google.com.sg/books?id=
osXw-pRsptoC

Li, C, Ge, Y., Mao, J., Li, D., Shan, Y.: Taggpt: Large language models are zero-shot multi-
modal taggers (2023). https://do1.org/10.48550/ARXIV.2304.03022

Li,Z.,Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text
classification: Potential and limitations. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing. pp. 10443—
10461. Association for Computational Linguistics, Singapore (Dec 2023). https://doi.org/10.
18653/v1/2023.emnlp-main.647, https://aclanthology.org/2023.emnlp-main.647

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
Stoyanov, V.: Roberta: A robustly optimized BERT pretraining approach (2019)

Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network prun-
ing. In: 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net (2019), https://openreview.net/forum?id=
rJInB3C5Ym

https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372
https://aclanthology.org/2020.acl-main.372
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.48550/ARXIV.2312.15166
https://doi.org/10.48550/ARXIV.2312.15166
https://doi.org/10.48550/ARXIV.2312.15166
https://doi.org/10.48550/ARXIV.2312.15166
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://aclanthology.org/D16-1139
https://books.google.com.sg/books?id=osXw-pRsptoC
https://books.google.com.sg/books?id=osXw-pRsptoC
https://doi.org/10.48550/ARXIV.2304.03022
https://doi.org/10.48550/ARXIV.2304.03022
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://aclanthology.org/2023.emnlp-main.647
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Mu and Lim

Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Lin, D., Matsumoto, Y., Mihalcea, R. (eds.) Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. pp. 142-150. Association for Computational Linguistics, Portland, Oregon,
USA (Jun 2011), https://aclanthology.org/P11-1015

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, L., et al.: Language models
are unsupervised multitask learners. OpenAl blog 1(8), 9 (2019)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer (2019)
Rudin, W.: Principles of Mathematical Analysis. International series in pure and
applied mathematics, McGraw-Hill (1976), https://books.google.com.sg/books?id=
kwqzPAAACAAJ

Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of BERT: smaller,
faster, cheaper and lighter (2019)

See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-generator
networks. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). pp. 1073-1083.
Association for Computational Linguistics, Vancouver, Canada (Jul 2017). https://do1.org/
10.18653/v1/P17-1099, https://aclanthology.org/P17-1099

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P, et al.: Llama 2: Open foundation and fine-tuned chat models (2023).
https://doi.org/10.48550/ARXIV.2307.09288

Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul, K., Belkada, Y., Huang, S., von
Werra, L., Fourrier, C., Habib, N., Sarrazin, N., Sanseviero, O., Rush, A.M., Wolf, T.: Zephyr:
Direct distillation of LM alignment (2023). https://doi.org/10.48550/ARXIV.2310.16944
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: Guyon, L., Luxburg, U.V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91tbd053c1c4a845aa-Paper.pdf

Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics and In-
telligent Laboratory Systems 2(1), 37-52 (1987). https://doi.org/https://doi.org/10.1016/
0169-7439(87)80084-9, proceedings of the Multivariate Statistical Workshop for Geologists
and Geochemists

Yu, M., Huang, Q., Qin, H., Scheele, C., Yang, C.: Deep learning for real-time social
media text classification for situation awareness—using hurricanes sandy, harvey, and irma
as case studies. In: Li, Z., Huang, Q., Emrich, C.T. (eds.) Social Sensing and Big Data
Computing for Disaster Management, pp. 33-50. Routledge (2020). https://doi.org/10.4324/
9781003106494

Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 28. Cur-
ran Associates, Inc. (2015), https://proceedings.neurips.cc/paper_files/paper/2015/file/
250ct8b51c77313t8dc8b4be867a9a02- Paper.pdf

Zhou, T., Chiam, K.H.: Synthetic data generation method for data-free knowledge distillation
in regression neural networks. Expert Systems with Applications 227, 120327 (2023). https:
//dot.org/https://do1.org/10.1016/j.eswa.2023.120327

Zhu, M., Gupta, S.: To prune, or not to prune: Exploring the efficacy of pruning for model
compression. In: 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenRe-
view.net (2018), https://openreview.net/forum?1d=Sy 1iIDkPM

https://aclanthology.org/P11-1015
https://books.google.com.sg/books?id=kwqzPAAACAAJ
https://books.google.com.sg/books?id=kwqzPAAACAAJ
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://aclanthology.org/P17-1099
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2310.16944
https://doi.org/10.48550/ARXIV.2310.16944
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.4324/9781003106494
https://doi.org/10.4324/9781003106494
https://doi.org/10.4324/9781003106494
https://doi.org/10.4324/9781003106494
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120327
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120327
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120327
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120327
https://openreview.net/forum?id=Sy1iIDkPM

	Data-free Functional Projection of Large Language Models onto Social Media Tagging Domain

