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Abstract. Next point-of-interest (POI) recommendation predicts a user’s
next destination from historical movements. Traditional models require
intensive training, while LLMs offer flexible and generalizable zero-shot
solutions but often generate generic or geographically irrelevant results
due to missing trajectory and spatial context. To address these issues,
we propose RALLM-POI, a framework that couples LLMs with retrieval-
augmented generation and self-rectification. We first propose a Historical
Trajectory Retriever (HTR) that retrieves relevant past trajectories to
serve as contextual references, which are then reranked by a Geographi-
cal Distance Reranker (GDR) for prioritizing spatially relevant trajecto-
ries. Lastly, an Agentic LLM Rectifier (ALR) is designed to refine out-
puts through self-reflection. Without additional training, RALLM-POI
achieves substantial accuracy gains across three real-world Foursquare
datasets, outperforming both conventional and LLM-based baselines.

Keywords: Next POI Recommendation · Retrieval-Augmented Gener-
ation · Large Language Models · Geographical Information.

1 Introduction

Next Point-of-Interest (POI) recommendation aims to predict a user’s next des-
tination from historical trajectories containing rich spatial-temporal patterns
[10]. This task benefits not only Location-Based Social Networks (LBSNs) but
also broader domains such as traffic management, urban planning, and pub-
lic health. Deep learning models including RNNs (LSTM, GRU), graph-based
methods, and more recently transformers have achieved strong results by cap-
turing sequential, structural, and contextual dependencies [4, 9, 14, 13, 11, 17, 2].
However, these approaches suffer from cold-start and data sparsity problems,
limiting their effectiveness in real-world applications.

Recently, LLMs have demonstrated significant advances [7, 3, 15, 1] in recom-
mendation tasks. Some research has begun to explore the integration of LLMs
into POI recommendation systems via a zero-shot manner. For example, LLM-
Move [3] and LLM-Mob [15] adopt delicate designed prompts to feed individual
users’ check-in histories into pre-trained LLMs. LMZS [1] assessed several pre-
trained LLMs by providing LLMs with examples of input and expected outputs
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to enhance predictive performance. However, existing zero-shot LLM-based ap-
proaches also have notable limitations. Simply using prompt engineering with
recent histories can be suboptimal, as the selected information may be less in-
formative or only provide irrelevant check-ins, potentially distracting the LLM.
This motivates us to design an approach that ensures that the most relevant
trajectory information is provided to the LLM.

To address these issues, we propose a Retrieval-Augmented Large Language
Model for next POI recommendation, termed RALLM-POI. Specifically, it
first applies a Historical Trajectory Retriever (HTR) that identifies highly simi-
lar historical user trajectories from a database, and prompt the LLM with con-
textually rich and personalized information. To enhance spatial plausibility, we
propose the Geographical Distance Reranker (GDR), which prioritizes support-
ing trajectories based on dynamic spatial alignment using Decaying Weighted
Dynamic Time Warping (DWDTW). By taking into account the user’s recent
geographic movements and introducing recency-biased weights, GDR reranks
the retrieved examples to better align with realistic spatial dynamics. Finally,
after the LLM generates its recommendations, we introduce Agentic LLM Rec-
tifier (ALR) that serves as a quality assurance layer to verify and rectify the
response of the prior LLM response, which ensures that the final recommenda-
tions are robust and adhere strictly to task requirements. We extensively validate
our RALLM-POI on three real-world Foursquare datasets, our method surpasses
prior training-based and zero-shot LLM based methods remarkably.

2 Methodology

In this section, we present RALLM-POI, a retrieval-augmented LLM pipeline for
next POI recommendation, as illustrated in Fig. 1. Given a test trajectory, the
Historical Trajectory Retriever (HTR) retrieves semantically relevant past tra-
jectories and their recommendations as in-context examples. A Geographical Dis-
tance Reranker (GDR) then prioritizes those most aligned with the user’s recent
spatial patterns, enhancing both behavioral and geographical relevance. Finally,
the Agentic LLM Rectifier (ALR) acts as a quality assurance step, prompting
another LLM to assess and refine the output for compliance and completeness.
Together, these components enable RALLM-POI to deliver zero-shot recommen-
dations that are both contextually informed and robustly validated.

2.1 Historical Trajectory Retriever (HTR)

To enhance the personalization and contextual relevance of recommendations,
we propose Historical Trajectory Retriever (HTR), which augments each test
trajectory with informative examples retrieved from a large database of histori-
cal user trajectories and their corresponding recommendations. The motivation
behind this design is that similar behavioral histories often indicate similar user
preferences, and grounding the prompt in authentic historical cases can lead to
better guidance for LLMs during generation.
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Sec. 3.1 Historical Trajectory Retriever (HTR)

Prompt for LLM

Long-term history Recent check-ins

Your task is to recommend a user's next point-of-interest (POI) based 
on his/her trajectory information. Consider the long-term check-ins to 
extract long-term preferences since people tend to revisit their frequent 
visits, and recent check-ins to extract users' current preferences.

Reranked 𝒌 trajectories & next POIs

Context: 
There are some recent check-ins by other users that might be useful. 
You can decide by yourself whether to recommend them or not.  Only 
use them as a reference when you are not sure what to recommend. 

Output Format: 

"recommendation" (10 distinct POIIDs of the ten most probable places 
in descending order of probability), and "reason" (a concise explanation 
that supports your recommendation according to the requirements).
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Sec. 3.3 Agentic LLM Rectifier (ALR)

Sec. 3.2 Geographical Distance Reranker (GDR)
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Fig. 1. The overall framework of RALLM-POI for the next POI recommendation task.

Formally, let D = {(hi, ri)}Mi=1 be the training database containing M his-
torical trajectories hi of all users and their corresponding recommendations
ri. Given a test trajectory q, we first convert both q and each hi into textual
strings of location IDs. These strings are then projected into a vector space using
an embedding function Emb(·), which is instantiated as a TF-IDF encoder. To
identify the most relevant historical behaviors, we compute the cosine similar-
ity between the embedding of the test user trajectory, vq = Emb(q), and each
database embedding, vi = Emb(hi). The similarity score between q and the i-th
historical trajectory is defined as sim(vq,vi) =

vq·vi

|vq|,|vi| . The k trajectories with
the highest similarities are selected to form a supporting context. Formally, let
I∗ be the indices of the top-k most similar trajectories:

I∗ = argmax
I:|I|=k

∑
i∈I

sim(vq,vi) (1)

For each selected index i ∈ I∗, the associated historical trajectories hi are re-
trieved and combined with their corresponding POI recommendation ri is de-
noted ci, i.e., ci = {hi, ri}, i ∈ [1, k]. The proposed HTR retrieves highly similar
historical cases, providing the LLM with clear, contextually relevant guidance
while avoiding distractors. Exposing these histories and their recommendations
in the prompt helps align outputs with successful reference trajectories. To fur-
ther improve quality, the retrieved trajectories are reranked before being used
in the LLM prompt (see Subsection 2.2).
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2.2 Geographical Distance Reranker (GDR)

After retrieving trajectories with HTR, we rerank them for geographical plausi-
bility. While HTR identifies textually similar cases, they may not align spatially
with the test trajectory. Since LLMs are sensitive to the quality and order of
support examples [5], the Geographical Distance Reranker (GDR) prioritizes
trajectories that best match the user’s recent spatial behavior.

Concretely, let the user’s recent trajectory of length N be q = {qn}Nn=1, where
each qn is a visited POI mapped to a latitude and longitude pair xn = (ϕn, λn).
For the i-th candidate support trajectory ci = {cil}Li

l=1 retrieved by HTR, we sim-
ilarly obtain the latitude and longitude pair sequence yil = (ϕ′

il, λ
′
il), i ∈ [1, k], l ∈

[1, Li]. To measure spatial alignment between the user trajectory and each can-
didate, we propose a Decaying Weighted Dynamic Time Warping (DWDTW)
distance based on real-world geospatial separation. Since trajectories vary in
length and are often temporally misaligned, traditional point-to-point metrics
like Euclidean distance could not appropriately handle these shifts. DTW [6] in-
stead finds an optimal alignment between sequences by minimizing cumulative
spatial cost on matched points.

Specially, to emphasize recent visited locations as they are more predictive
of immediate intent, we implement a recency bias with exponentially decaying
weights, ωn = ρN−n for ρ ∈ (0, 1) and user POI length N . The DWDTW
alignment cost between q and a candidate c is thus computed as:

DWDTW(q, ci) = min
∑

n∈[1,N ],l∈[1,Li]

ωn · d(xn, yil), (2)

where d is the Haversine distance, xn is the user’s recent trajectory, yil is the
retrieved i-th trajectory. Lower WDTW values indicate stronger spatial consis-
tency, especially at recent steps. DWDTW allows us to identify supportive tra-
jectories even when users take slightly different paths. We compute DWDTW
for all retrieved candidates ci, rerank them in ascending order, and include them
as contextual support in the LLM prompt. The LLM is also instructed to use
its judgment in leveraging this context, avoiding over-reliance on retrieved infor-
mation. Our proposed GDR injects spatial awareness into prompt construction,
ensuring the most geographically plausible examples are prioritized and guiding
the LLM to generate POI recommendations that reflect realistic movements.

2.3 Agentic LLM Rectifier (ALR)

To enhance reliability and compliance, we introduce an Agentic LLM Rectifier
(ALR) inspired by recent agentic RAG work [12]. While earlier components re-
trieve and contextualize trajectories, structured recommendation tasks often re-
quire an extra verification to enforce constraints such as formatting, uniqueness,
completeness, and intent alignment. Since LLMs in a single pass may overlook de-
tails, ALR adopts an agentic approach where the model self-assesses and revises
its outputs, leveraging iterative reasoning to ensure more robust and reliable
recommendations. Specifically, the agentic rectification prompt is structured as:
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Agentic LLM Rectifier Prompt

A user has completed the following task:
<Prompt of prior LLM>
<Response of prior LLM>
Your task:
Carefully review the answer above. Evaluate whether it satisfies all re-
quirements. If it is correct, concise, and well-formatted, reproduce the
answer. If you find any issues (formatting, duplicates, insufficient recom-
mendations, irrelevant POI IDs, unsatisfactory reasoning, etc), revise the
answer to fully meet the requirements.

Therefore, the agentic rectifier LLM strategy serves as a quality assurance
layer that systematically detects and amends errors that may otherwise propa-
gate to the final output, and the final response strictly adheres to all constraints.

3 Experiments

3.1 Overall Performance

We conduct experiments on three Foursquare datasets [16] representing Singa-
pore (SIN), New York City (NYC), and Phoenix (PHO). For preprocessing and
ensuring data quality, POIs with fewer than 10 interactions are filtered out. We
also remove users that have less than 5 trajectories and discard trajectories with
no more than 3 POIs. The interaction records are chronologically sorted for each
user, and 80% of the data is used for database construction, while the remain-
ing is for testing. Since our method is zero-shot, no validation set is required.
RALLM-POI is compared with several representative training-based approaches
and zero-shot LLM methods: ALSTM [4], MCRNN [9], CTLE [11], CFPRec [17],
LLMMob [15], LLMMove [3], and LLMZS [1]. For evaluation, two widely used
metrics are employed: Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG). GPT-4o-mini is applied as the baseline LLM model for all zero-
shot methods due to its capability and efficiency. The ρ is set to 0.8 and we
retrieve k=10 historical trajectories.

Table 1 summarizes the performance comparison across three datasets. Our
method demonstrates strong and consistent performance across almost all datasets
and metrics, which achieves especially high scores on the PHO dataset. Com-
pared to traditional sequence-based models (ALSTM, MCRNN), which struggle
to capture diverse and sparse locations, our approach integrates both contextual
and geographical cues, yielding significantly higher hit rates and NDCG scores.
Transformer-based models (CTLE, CFPRec) improve over sequential methods
via attention, yet our framework consistently outperforms them on PHO and
SIN datasets, demonstrating the superior generalization of LLMs enhanced by
retrieval and reranking. Unlike zero-shot LLM-based methods (LLMMob, LLM-
Move, LLMZS) that rely on potentially irrelevant prompt contexts, our RAG
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Table 1. Performance comparison in HR@K and NDCG@K on three datasets, ”H”
stands for HR, and ”N” stands for NDCG. The methods are grouped into training-
based and zero-shot methods. Best results in bold and second-best in italics.

Data Metric
Training-based Methods Zero-shot Methods

ALSTM MCRNN CTLE CFPRec LLMMob LLMMove LLMZS Ours

PHO

H@5 0.1579 0.1905 0.2632 0.3421 0.3158 0.3157 0.3421 0.5263
H@10 0.2377 0.2726 0.3605 0.4253 0.5789 0.6051 0.5526 0.6842
N@5 0.1033 0.1264 0.1995 0.2432 0.2355 0.2479 0.2520 0.3505
N@10 0.1385 0.1617 0.2068 0.2730 0.3193 0.3434 0.3191 0.3989

NYC

H@5 0.1667 0.1835 0.2421 0.2734 0.2465 0.2470 0.2020 0.2554
H@10 0.2031 0.2397 0.3205 0.3306 0.4071 0.4023 0.3723 0.4190
N@5 0.0912 0.1036 0.1513 0.1588 0.1571 0.1565 0.1285 0.1599
N@10 0.1638 0.1870 0.1841 0.1834 0.2107 0.2132 0.1838 0.2132

SIN

H@5 0.1296 0.1608 0.2041 0.2650 0.2832 0.2508 0.2785 0.3148
H@10 0.1933 0.1862 0.2784 0.3085 0.4240 0.2863 0.4335 0.4399
N@5 0.1027 0.1169 0.1315 0.1588 0.1957 0.1455 0.1924 0.2231
N@10 0.1476 0.1591 0.1556 0.1825 0.2414 0.1713 0.2422 0.2639

Fig. 2. Ablation study of the proposed components HTR, GDR, and ALR.

based framework ensures high-quality, contextually relevant trajectory refer-
ences, while the GDR further sharpens spatial relevance. Together, RALLM-POI
can fully exploit LLM reasoning and generalization capabilities.

3.2 Ablation Study

Analysis on the proposed components. We conduct an ablation study to
evaluate each component of RALLM-POI (Fig. 2). The full model achieves the
best HR@5 and NDCG@5 across all datasets, demonstrating the effectiveness of
our design. Removing ALR (‘w/o ALR’) consistently lowers performance, high-
lighting its role in rectifying LLM outputs. Further removing GDR (‘w/o GDR,
ALR’) reduces PHO HR@5 from 0.4736 to 0.4473 and NDCG@5 from 0.3335
to 0.3105, showing its importance in leveraging historical geographical context.
When all three components are removed (‘w/o HTR, GDR, ALR’), performance
drops most significantly (e.g., NYC HR@5: 0.2370, NDCG@5: 0.1522). These
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Fig. 3. Performance comparison with different decaying weight ρ in DWDTW.

Table 2. The performance of different user groups for user cold-start analysis.

User PHO NYC SIN
Groups HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5
Inactive 0.5000 0.3874 0.2928 0.1788 0.2990 0.2026
Normal 0.5333 0.3644 0.2863 0.1903 0.3083 0.2230
Very Active 0.4745 0.2680 0.1807 0.1058 0.3249 0.2136

results indicate that each component contributes both independently and cumu-
latively to RALLM-POI’s effectiveness.
Analysis on the decaying weight ρ of DTW. In GDR, ρ controls the spa-
tial alignment cost so that recent locations in a trajectory receive greater weight
in DWDTW. As shown in Fig. 3, increasing ρ from 0.5 to 0.8 improves PHO
performance (HR@5: 0.4737 to 0.5263, NDCG@5: 0.3271 to 0.3505), highlight-
ing the benefit of prioritizing recent points. However, setting ρ too high (e.g.,
0.9) reduces accuracy, likely due to overemphasis on recency at the expense of
contextual diversity. A similar trend is observed on NYC, where performance
peaks at ρ = 0.7–0.8. We therefore adopt ρ = 0.8 as a balanced choice, yielding
robust gains while preserving spatial breadth.
Analysis on user cold-start performance. The cold-start problem arises
when inactive users provide limited trajectories, making their patterns harder to
capture [8]. To evaluate adaptability, we divide users into inactive (bottom 30%),
normal, and very active (top 30%) groups based on long-term POIs. Results
on PHO, NYC, and SIN (Table 2) show that inactive users often achieve the
highest performance, e.g., PHO with NDCG@5 of 0.3874 and NYC with HR@5
of 0.2928, outperforming very active users. This trend reflects the strength of
our HTR module, which retrieves trajectories from similar users to enrich sparse
histories, effectively mitigating cold-start challenges.

4 Conclusion
This paper presents RALLM-POI, a zero-shot next POI recommendation frame-
work that combines LLM generalization with retrieval-augmented generation and
self-rectification. Unlike traditional training-based methods, RALLM-POI lever-
ages LLM knowledge, enriched with contextually and geographically relevant
trajectories via HTR and refined by GDR, while ALR provides self-evaluation
and correction for quality assurance. Evaluations on three real-world datasets
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show substantial gains over both training-based and state-of-the-art zero-shot
LLM methods. Ablation studies highlight how each component synergistically
enhances accuracy and robustness, particularly addressing cold-start scenarios
while maintaining adaptability across diverse user trajectories.
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