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Itinerary recommendation involves suggesting a sequence of Points of Interests (POls) that users obtain maximum satisfaction under a
time budget. Existing models have three challenges. First, they model user interest as non-time dependent, which can not capture user
interest appropriately because user interest can be contextual on time, e.g., interest in restaurants are likely higher during typical meal
times. Second, they model the distance dependency of user interest as a linear one, which does not always adequately capture this
relationship, e.g., could be a cubic decay relationship. Finally, existing studies treat POI recommendation and itinerary optimisation as
two separate problems, which can result in sub-optimal itinerary recommendations. In this paper, we propose a deep learning model
that recommend POIs and construct the itinerary simultaneously and in an integrated manner. It captures user dynamic interest and
non-linear spatial dependencies in itinerary recommendations. The proposed model has two steps, where the candidate selection
policy generates a set of personalised candidate POIs based on user interest and the itinerary construction step maximises user interest
within budget time. To recommend an appropriate candidate set, we propose a multi-head, attention-based transformer to leverage
periodic trends and recent activities to capture user dynamic preferences. We also introduce a new co-visiting patterns-based graph
convolutional network (GCN) model to capture user non-linear spatial dependencies. To construct the full itinerary from the dynamic
candidate sets, we apply greedy policy that incrementally constructs itineraries within the budget time which aims to maximise user
interest and minimise queuing time. Experimental results show that the proposed deep learning model outperforms state-of-the-art
baselines in itinerary recommendation in four theme parks and four cities datasets The proposed model outperforms the baselines
in itinerary recommendation from 7.79% to 26.28% on various dataset in terms of F1-score value. We also show that the proposed
candidate generation approach outperforms the state-of-the-art next POI recommendation models in eight real datasets. The proposed
model outperforms the baselines on average by 11.29 % in terms of F1-score@5 values and 9.08% in terms of F1-score@10 values. We

have publicly shared our source code at GitHub! for the reproducibility of our proposed model.
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1 INTRODUCTION

Itinerary recommendation is of great importance due to numerous applications in tourism, trip recommendation, event
management and routing [6, 20, 28]. However, itinerary recommendation is a challenging task as it is affected by
multiple complex factors, including spatial and temporal information, users’ dynamic behaviors, queuing at venues
and limited time budgets. First, visitor POI preferences are influenced by spatial factors. For instance, some users
might be interested in visiting nearby restaurants, while others could be more interested in visiting the most famous
restaurant within a certain radius of their current location. Moreover, POI-to—POI spatial dependencies based on linear
distances (e.g., Euclidean distance) are unable to capture preferences for famous places located further away. Second,
the temporal influence relates to visitors’ dynamic preferences that are dependent on the time of day and day of the
week. For example, some visitors may prefer to visit a church at noon on the weekend, while others might prefer to go
during the evenings on weekdays. Earlier works that focus on information about recently visited locations are unable
to capture these contextual behaviours [20, 30, 32, 50]. Third, people generally prefer to avoid long queuing times to
enter a POL If a large number of visitors are recommended to visit a POI at the same time, this may create a long queue;
hence, there is a dependency in the itinerary recommendation problem between multiple visitor interest and their
recommendations, further complicating the problem. The queuing time has a significant influence on user experience at
many types of POIs, including restaurants, concerts, theme parks and festivals. Due to the COVID-19 pandemic, queues
are also undesirable, it is important to maintain physical separation.

Another element of the problem is that of scheduling under a time budget, as visitors generally have limited time
available to complete their full itinerary, which makes the problem more complex. Existing works [17, 26] schedule POIs
and construct itineraries based on user interest rank and queue influence; as a result, personalised temporal preferences
are ignored, leading to sub-optimal itineraries.

To illustrate the importance of these challenges, an example is presented in Figure 1. A visitor has a preference for
Churches (0.8), Museums (0.75), Restaurants (0.65), Shopping Malls (0.5) and Cafes (0.6), where the values in parentheses
are their preferences (high value indicates stronger preference) and time budget is eight hours. A recommendation
focused on only the most preferred POIs without considering the time of day, queues or scheduling and time budgets
[16, 18, 20, 50] could be Club — Museum — Restaurant — Cafe — Shopping Mall, regardless of when the visitor starts
the itinerary (e.g., 8:00 am or 12:00 pm). However, this itinerary has two problems: (i) time-based preferences were not
considered, meaning that a restaurant could be recommended inappropriately at 3 pm; (ii) although visitor flow in the
Restaurant and Shopping Mall POIs can be significant, which is ignored and leading to significant queuing and leading
to sub-optimal itineraries. Instead, suppose the visitor starts the itinerary at 8:00 am. In that case, a temporal-aware
personalised itinerary (which is aware of temporal influences but not queues) [9] could be Cafe A or B — Museum
— Restaurant (C or D) — Shopping Mall — Club. However, as the approach is not queue—aware, it could recommend
Cafe B over Cafe A, even though Cafe B is more crowded and has a longer queuing time. Generally, users are not
interested in waiting a long time. In contrast, consider a model that is aware of all of the challenges mentioned above:
the itinerary recommended could be Cafe A — Museum — Restaurant C — Shopping Mall — Club. This will avoid
queues where possible (at Cafe B) and also schedule breakfast (8 am, Cafe A) and lunch (12.15 pm, Restaurant C) at the
appropriate times. Moreover, this recommendation might be different if the time budget is four hours, as a visitor with
Manuscript submitted to ACM
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12:15 PM

Museum Restaurant Shopping Mall Club
POIs

Personalized Itinerary:
Club --> Museum --> Cafe --> Restaurant --> Shopping Mall

‘ 1 ’ Temporal Personalized Itinerary:
Cafe (A/B) --> Museum --> Restaurant (C/D) --> Shopping Mall -->Club

Temporal Personalized with Queue Itinerary:
Cafe (A) --> Museum --> Restaurant (C) --> Shopping Mall -->Club

=)

Start 8:00
am

Fig. 1. Example of temporal personalised itinerary with queuing time. There are two Cafes (A and B) and two Restaurants (C and D),
and three possible itineraries are recommended based on different strategies.

this time budget could not visit the restaurant at 12:15 pm. These challenges motivate us to develop a new itinerary
recommendation approach based on visitors’ time budget, queuing and temporal preferences.

Nowadays, a number of deep neural models have been proposed considering spatiotemporal dependencies [20,
30, 32, 37, 50] for recommending next POIs. However, these models do not consider queuing time and budget time
influences. Besides this, these models only recommend top-k POIs to the user, which can not handle POIs scheduling to
construct a full itinerary. Chang et al. [3] proposed a GCN-based GGLR model capturing POI to POI non-linear distance
considering two kinds of influences, whereas temporal influence was ignored. The temporal influence is strongly related
to the POI selection approach. Besides this, constructing an itinerary from the dynamic selected POIs is a scheduling
problem. If the model recommends restaurants at coffee time and coffee shops at lunchtime, it would be inappropriate
even though both are common in itineraries. Limited work that personalizes the recommendation of POIs and also
schedules them with budget time. Recently, researchers [17, 26] focused on queuing time influences in the itinerary
recommendation that prefers to avoid long queuing times but did not consider complex spatiotemporal dependencies
among POIs and visitors. Existing PersQ [26] and EffiTourRec [17] used iterative learning to solve it as an optimisation
problem in which user’s temporal personalize preferences were not considered, which leads to sub-optimal solutions.
PresQ and EffiTourRec are two models that have employed Monte Carlo Tree Search (MCTS) for generating itineraries
by balancing the exploration and exploitation of knowledge. However, a significant drawback of MCTS is its tendency
to overlook user-specific interests during the exploration phase, which is primarily intended to manage the selection of
points of interest (POIs) that have not been previously visited. To maximize user engagement with dynamic interests, we
should emphasize a more assertive strategy (e.g. Greedy) for selecting points of interest (POIs) based on their time-based
preferences.

Therefore, capturing user personalised preferences and scheduling those preferences so that users obtain maximum
satisfaction remains a challenging proposition due to learning (personalised to the user) and optimisation (scheduling)
problems. To solve these challenges, we propose a deep learning model that learns personalised preferences in the
candidate generator step and schedules these preferences using greedy policy in the itinerary construction step. Finally,
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users receive maximum satisfaction based on their dynamic preferences within budget time. To sum up, in this paper,

we aim to answer the following research questions.

e How does the proposed deep learning model select the next top-k POIs for recommendation, and what insights
into the decision-making process can be gained from this selection?

o How effective is the proposed deep learning model in generating comprehensive itinerary recommendations?

e How does an ablation study of temporal user interest, co-visiting patterns, and personalization features affect
the performance of the proposed recommendation model?

e What factors contribute to the superior performance of greedy policy-based itinerary construction compared to

Monte Carlo Tree Search (MCTS) based itinerary construction?

Our proposed Deep Learning—based Itinerary Recommendation (DLIR) model recommends itineraries by dynamically
considering user preferences and queuing times, crucial for real-life applications like tourism and trip planning. The
model addresses both user interests and the impact of waiting time, which are essential for effective itinerary planning.
Given the heightened importance of queuing time in the context of COVID-19, our approach ensures personalized
recommendations that align with users’ time constraints and preferences, enhancing overall satisfaction. We also note
the broader relevance of queuing time in critical scenarios, such as medical appointments, where efficient scheduling
can significantly impact outcomes.

The main contributions of this research work can be summarised as follows:

e We propose a Deep Learning—-based Itinerary Recommendation (DLIR) to recommend itineraries by learning user
temporal preferences and scheduling those preferences. The candidate generator leverages the user dynamic
preference factors and generates the best candidate POI set based on time, while the scheduling part solves the
scheduling problem considering queuing time influence and budget time.

o To capture user dynamic preferences, we utilise the user’s recent, periodic, and trend patterns and introduce an
adaptive GCN-based POI-to-POI user movement relationship that appropriately solves the non-linear spatial
relationship.

e We construct the full itinerary applying greedy policy where POIs are selected dynamic way aiming maximise
user interest and minimise queuing time.

o Analysis of experimental results on four theme parks and four cities dataset shows that our model outperforms

than the baselines regarding top-k POI and itinerary recommendations.

Our proposed DLIR itinerary recommendation model stands out from both existing recommendation models and our
prior works [16-18] in several key aspects. Firstly, our model excels at capturing user dynamic preferences, in contrast
to baselines that typically consider generic, unchanging user interests. In our previous studies [16, 18], we focused on
factors like distance, queuing time, and POI descriptions to gauge user interest, while neglecting the element of users’
evolving preferences over time. Secondly, we employ Graph Convolutional Network (GCN)-based co-visitor movements
instead of relying solely on spatial distance to model user behavior. This is because user interest doesn’t always adhere
to a linear distance-based pattern. Our earlier work [16, 18] measured distance purely in terms of Euclidean linear
distance between POlIs, disregarding real-life path distances. Thirdly, our model has the capability to simultaneously
select the next appropriate POI and construct an itinerary, whereas existing deep learning models typically recommend
only the next set of POIs. Fourthly, our model represents a departure from our previous EffiTourRec model [17], which
primarily focused on factors like POI popularity, queuing time, and common (non-personalized) user interests. In our
current research, we leverage user movement patterns, dynamic preferences, and personalized interest maximization to
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construct itineraries. Lastly, our proposed model adeptly captures users’ periodic behaviors, a facet that existing models
often overlook.

We organise the remaining part of this research work as follows. We briefly discuss related works in Section 2 and
problem statement in Section 3. Then, we introduce our proposed model in Section 4. In Section 5, the experimental
result analyses with state-of-the-art are illustrated. The research significance and impact have been described in Section

6. Finally, we conclude our proposed model and present avenues for future research direction in Section 7.

2 RELATED WORK

Itinerary recommendation has attracted attention from a wide range of researchers because of the broad applications of

tour recommendation. This section provides an overview of research works in POI and itinerary recommendation.

2.1 POl Recommendations

Recently, deep neural models have demonstrated superior performance in next POI recommendation. Previous studies
have utilised spatial and temporal [30, 41] dependencies, attention-based spatiotemporal influence [20] and self-attention
network [15]. In addition, Check-in sequence and text contents of POIs used in CAPE [4] model. Existing works [28] and
[9] show that visiting and traveling time has significant contributions to improving tour planning. A neural network
framework for the next POI recommendation NeuNext [46] has been proposed by leveraging POI context and using
short and long-term preferences in unstructured data. Zhou et al. [51] incorporated different contextual information
into their approach. Moreover, semi-supervised learning-based POI recommendation was employed in [42]. Chang et al.
[3] proposed GCN-based geographical latent representation for POI recommendation, which considers POI distance
and ingoing and outgoing influence while ignoring temporal factors. To alleviate the data imbalance issue, STrans [39]
has also been proposed by leveraging inter-dependencies between space and time. Wu et al. [40] proposed personalised
Long and Short term preference model considering POI categories and check-in time. Li et al. [23] introduced a novel
deep neural network for crossing-city POI recommendations, which integrates users’ visited cities” information and
applies transfer learning. Dong et al. [10] applied a category-level sequential and non-sequential influence-aware
probabilistic generative model for POI recommendation. STSP [35] model utilised category and location-aware features
to predict the next accurate POI recommendation. Zheng et al. [48] proposed a hierarchical attention network using
memory augmenting short-term and long-term check-ins memories. Wang et al. [37] applied reinforcement Learning
based spatial knowledge graph, which captures user and spatial entities (e.g., POIs, activity types, functional zones)
influence in POI recommendation. Photo2Trip [47] model used visual contents and collaborative filtering technique for
POI recommendation. Hu et al. [19] proposed travel information based on multi-source data to capture user interests and
find top-ranked itineraries. More recently, significant improvements have been achieved by using an attention-based
transformer to capture multiple dependencies using a non-recurrent encoder—decoder model in POI recommendation
[16]. Other research applied social influence based on users’ common check-ins and their friendship networks [34] and
hashtags-based POI recommendation [1]. Wu et al., [38] proposed bi-direction spatiotemporal transition patterns and
personalized dynamic preferences to recommend missing check-in POI.

Therefore, the aforementioned approaches fail to capture temporal influence-based user dynamic preferences and do
not adequately model non-linear spatial dependencies between POIs. Moreover, these models are unable to schedule

POIs to form complete sequences within a customized budget time. 2

2Customised budget time means the maximum time a user is willing to spend on an itinerary, which can include travel time, time spent at locations, and
queuing time to the related activities.
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2.2 Itinerary Recommendations

Itinerary recommendations have focused on discovering a full tour path based on various constraints. Existing itinerary
recommendation objectives are to recommend itineraries based on particular POI visit order [13], group pleasure [12, 27],
passenger travel pattern [24], mandatory POI categories [2, 25], demographic features [7], geographical check-in impact
[8], context-aware personalized [33] etc. Lim et al. [29] proposed the PersTour model on trip recommendation using
modified Ant Colony Optimisation. Debnath et al. [9] introduced a preference-aware and time-aware route planning
approach. Another heuristic-based itinerary recommendation model maximises popularity and user’s interest and
constructs itinerary within limited budget time [44]. The PersQ [26] model first introduced reinforcement learning-
based Monte Carlo Tree Search (MCTS) for itinerary recommendation, maximising user interest and minimising queue
time. Halder et al. [17] updated itinerary recommendations using efficient heuristic and effective pruning techniques in
adaptive MCTS to reduce non-optimal itineraries. However, these models do not consider user temporal preference
changes and spatiotemporal dependencies among the users and POIs. Unsupervised deep learning—based model DCC-
PersIRE [6] was proposed to recommend itineraries that integrate POI content and POI categories to predict users’
interest and visit duration. Kuo et al [22] introduced BERT-Trip, a self-supervised contrastive learning framework that
can learn efficient and scalable trip representations for time-sensitive and user-personalized recommendations. CTLTR
[49] model leveraged intrinsic POI dependencies and traveling intent to enhance tour recommendations. It addresses
data sparsity by pre-training with auxiliary self-supervised tasks and utilizes a hierarchical recurrent encoder-decoder
to capture tourists’ intentions. Gao et al. [11] introduced an end-to-end model called DeepTrip that helps understand
human movement and predict transitions between POIs. It uses a trip encoder with an RNN to capture route details and
a trip decoder to rebuild the route from a refined latent space. Therefore, this model is unable to construct a full itinerary
within the budget time. In the present research work, we develop a deep learning-based itinerary recommendation
model that can select appropriate POIs as the next move and construct efficient itineraries within the budgeted time.

Table 1 lists the main differences between our proposed model and baselines (including our previous works).

Table 1. Comparison among the proposed model and baselines in terms of considering various constraints.

User Recent  User Periodic  Co-visiting Queue Budget Recommend Recommend .

Models K K R Technique
Interest Interest Interest Time Time POI Itinerary

Photo2Trip [47] v v Collaborative Filtering
Liet al. [23] v v Deep & Transfer Learning
Wang et al. [37] v v Reinforcement Learning
Wu et al., [38] v v Bi-RNN
ST-RNN [30] v v LSTM
STACP [32] v v Matrix Factorization
APOIR [50] v v Adversarial
ATST-LSTM [20] v v Attention + LSTM
TLR [16] v v Transformer
TLR-M [16] v v 4 Transformer + Multitask
TLR-M _UI [18] v v v Transformer + Multitask
EffiTourRec [17] v 4 v v MCTS + Pruning
PersQ [26] v v v 4 MCTS
DCC-PersIRE [6] v v Deep + Collaborative
THA [44] v v v Heuristic
DeepTrip [11] v GANs + RNN
CTLTR [49] v v v Self-supervised learning
BERT-Trip [22] v v Attentive Contrast Learning
DLIR (Proposed) v v v v v v 4 Transformer + Greedy
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3 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present some basic definitions for a better understanding of POI and itinerary recommendations.

Then, we present the problem statement of this research work.

DEFINITION 1. Point of Interest (POI): Let a set of tourist points be P = {p1, p2, p3, - -+, pn} in the theme park or city.
Each point p; € P can have properties e.g. point’s area, point’s category, travel time from other POIs, visiting time and

queuing time.

DEFINITION 2. Popularity of POI (PoP): Let a POI attraction be p; € P, the popularity of p; is defined as the number of
times p; has been visited by the visitors U and it is defined as:
PoP(pi) = ) (u,pi) (1)
uelU
where, 6(u, p;) = 1 if the visitor u € U visits POI p; in his/her tour, otherwise §(u, p;) = 0.

DEFINITION 3. User-POI Travel Sequence: Let the set of POIs be POIs = {p1, p2, -+, pnJ. Let user u € U visits a
travel sequence of POIs, which is defined as P, = (p1, t1, q1), (P2, t2, q2), - - -, (P> tk» qx ), Where p1, p2, - -+ pr € POlIs,
B <ty <. <, tisthe arrival time at POI p;, q; is the queuing time at p;, and k is the length of the travel sequence,
1 < k < n. We can also construct the sequence of POIs visited by a user by concatenating their visited POIs in chronological

order.

Problem Statement: We model this problem as both a recommendation problem and an optimisation problem. The
model takes a set of users U, the users’ historical visit sequences, a user visiting time T and user queuing time Q. Each
user has a budget time of By, for completing each tour plan. In addition, each user has personal preferences, which can
vary depending on the time of travel and the season. The main goal of itinerary recommendation is to recommend a
sequence of POIs, like existing works [6, 26], that enable users to derive maximum satisfaction from their visits while
ensuring that the total time (which includes travel and queuing times) is within the time budget. The objective function

is defined as follows:

argmaxp, cpoys Z Int(ui, pj, tj) @
Pj€Py;
subject to
> D0 Path(pi,pj) + Cost(pi,pj te) < Bu 3)
Pi€Pu; pjEPy;

where Int(u;, pj, tj) is the satisfaction that user u; derives from visiting p; at time ¢;. The length of the constructed
sequence depends on budget time By, of user u, and the total time cannot exceed the budget time; this is given by
Equation 3. Here, Path(p;, pj) = 1 if user u visits p; and p; in chronological order and p; # pj; otherwise, it is 0.
Moreover, Cost(p;, pj, t;) is the time from accessing p; to entering p;, which is made up of the time spent visiting p;
is (Visp,), the travel time from p; to pj is (Trap, p;) and the queuing time at p; before entry is (Queue,, +;); recall that

tj is the arrival time at p;. The cost is defined as follows:

Cost(pi, pj, tj) = Visp, + Trap,p; + Queuep, ¢, (4)
This problem is similar to a time-varying version of the Orienteering Problem (OP) [14], which is NP-hard, in addition

to requiring the prediction of user-specific Int(.) and Cost(.). We have observed that the transformer-based model
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makes observations and selects the best actions within an environment as the next move. Thus, We propose a greedy

policy-based deep learning approach to tackle this problem.

4 PROPOSED DLIR MODEL

We now present our proposed model, designed to address both the recommendation and optimization challenges
in itinerary selection. The recommendation task focuses on suggesting a set of POIs that are most relevant to the
user, while the optimization process sequentially selects POIs that maximize user satisfaction while maintaining the
itinerary’s feasibility. Our proposed model comprises two key components: the candidate generator (c.f. Section 4.1) and
the itinerary construction (c.f- Section 4.2). In the following subsections, we describe each component of our proposed

model in detail.
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Fig. 2. Deep learning—based candidate generation model.

4.1 Candidate Generator

Figure 2 illustrates the first step of our proposed model called the candidate generator, which selects POIs based on
various features. We employ a multi-head attention transformer model that captures and learns the influence of these
features. The transformer’s output is a POI representation, which is then used to select the next POIL This model
effectively captures both the user’s historical movement patterns and periodic behaviors. The policy selects candidate
POIs based on the highest transition probabilities, which are personalized for each user. These probabilities are influenced
by the user’s temporal movements and co-visitor patterns. The key challenge is integrating these factors to achieve an
optimal, influence-based POI selection. Omitting any of these elements could lead to suboptimal recommendations, as
illustrated in Figure 1. The following subsections provide details on each component of the candidate generator.
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4.1.1 Temporal Relation. In real-life scenarios, users often follow daily or weekly periodic patterns, the influence of
which cannot be captured by recent temporal patterns. Earlier research [16, 20, 30, 32, 50] focused only on the influence
of recent temporal patterns and overlooked the impact of periodic patterns. We propose three periodic embedding
channels to capture different temporal dependencies: recent, periodic, and trending. The recent channel reflects the
user’s travel history from the past few hours, while the periodic channel (daily and weekly) and trending channel
(monthly and quarterly) provide two distinct perspectives. The periodic channel captures daily and weekly events,
whereas the trending channel tracks longer-term patterns over months and quarters. Utilizing a multi-head attention
transformer architecture, known for efficiently handling multiple features [16], we incorporate information from these
three temporal patterns to fully leverage their impact.

First, the recent check-in sequence pattern TI, can be represented as the following equation:
Tl = (Xt Xe-2.Xe-1) €R™ ©)

where t}, is the length of the recent timestamp slots and ¢ is the current time step. These timestamp slots may be 15 min,
30 min, or one hour in length, which is user-defined. Although the time step is a continuous value, we convert it as
a discrete value based on time slots. Moreover, the periodic temporal impact may be daily, weekly, monthly and/or

seasonal. We can define the periodic patterns for each of the periodic view impacts as follows:

Tl = (Xt-tyspar Xecsepp - Xt-pa) € B ©
Ty = (Xe—tyspas -+ > Xe=25pys - Xe—p,,) € RYY )
Tl = (Xe—tyipms " * s Xt=2ips s Xt—pr) € RO ®)

TIy = (Xt—tyepss** + Xt=2upgs o Xt—py) € R 9)

where tg4, ty, tm and tg are the input time lengths of daily, weekly, monthly and seasonal activities, respectively.
Moreover, pg, pw, Pm and ps represent daily, weekly, monthly and seasonal activities. From these four kinds of temporal
patterns, daily and weekly patterns can be combined via transition matrix fusion to create periodic transition matrices.
However, monthly and seasonal periodic patterns are used to construct trend transition matrices. The matrix fusion can

be expressed as follows:

Tlrecent = Wy % Tl (10)
Tlperiodic = Wa * Tlg + Way + Tl (11)
Tlirends = Wm * Ty + Ws + Tl (12)

where W, Wy, W,,, W;;, and Wy are transition matrices.
These three kinds of temporal patterns are combined using a non-linear fusion (via multi-layered perceptron layers)

to create (fused) periodic transition matrices. The fused matrix is defined as follows:

Xtem = Concat(Tlrecents Tlperiodics Tltrends) (13)

The temporal vector X;em € RF where F = max (ty, tg, tw, tm, ts), is one of the input components of the transformer
architecture in Figure 2. This vector represents the temporal features that influence the next appropriate POI candidate

sets.
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4.1.2  Co-visiting Relation. User movement between POlIs plays a key role in predicting behavior. A previous model
[45] uses Euclidean distance between grid points in a convolutional neural network, but this approach presents two
challenges. First, user preferences can vary—sometimes they prefer nearby locations, while at other times they opt for
more distant ones. These preferences also shift based on time; users tend to visit nearby places on weekdays and travel
farther on weekends. Second, real-world paths between POIs are rarely straight, unlike the assumptions of Euclidean or
Manhattan distances, which can lead to discrepancies in actual travel distances. To address this, we analyze movement

patterns, incorporating the number of co-visitors and POI popularity to identify trends in user movement data.

A|B|C|D|E A|B|C|D]|E
1578|100 A|0]19|/28|10| 9
0|12/ 8| 0|0 ., B |15/ 0 |28|10| 9
00205 |0 C|15/19| 0 |15]| 9
0/]0|0]J10/ 0 D|15(12|20] 0 | 9
0|0|4]|5]|9 E|15]|12|24|15| O

. . Updated Matrix A

Co-visitors Network Adjaceney Matrix A (Popularity & Co-visits)
= —1/2 ~ ~—1/2 A/BICIDJE A/BICID|E
D TAD Aln/ed 0 o] o] o A|66|/0 0|00
«L B|ofveZ olo]|o B|0|62/0|0|0
GCN Output C|lOJ0 s 0|0 |CJOJO]58]0]0
D|O0O]| 0| 0 i1y/s6 O D|IO|O0O|0|5]|0
E| 0| 0| 0|0 |/ E|0|0|0| 0|66

Degree Matrix 1"')_1/2 Degree Matrix D

Fig. 3. An example of five nodes based on GCN graph input and output.

Figure 3 shows an example of five nodes (A, B, C, D and E) based on GCN graph inputs. The graph is directed, and
the table shows the adjacency matrix in which the edge weight between a pair of nodes denotes the number of visitors
that visit both POIs (referred to as co-visiting) and the node weight indicates the popularity of the POIs (Definition
2. If the model knows the co-visitor flow and POI popularity, it can easily recommend potential POIs to the users
without considering the distance between them. To capture these two factors in the GCN model, which may identify
relationships between nodes, we update matrix A and create A by adding the adjacency edge weight and the target
node’s popularity weight. For example, weight E — C in Update Matrix A is 24, which comes from the E — C weight 4
in Adjacency Matrix A and the popularity of node C (20) in the Co-visitors Network in Figure 3.

For the standard GCN graph representation, we initialise the matrix with 0s on the diagonals. Here, we consider the
edge and node weights in the Co-visitors Network to capture user movement patterns and POI popularity impact-based
POI-to-POI movement. We then use the GCN model to capture user dynamic behaviour prediction in the candidate
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popularity network while D7 is the degree matrix. The output of GCN is POIs node represent which embedded with

POIs sequences in block E in Figure 2.

4.1.3 Personalised Relation. Customized embeddings capture a user’s preferences by incorporating recent co-visits
during check-ins and the associated temporal patterns. The co-visiting and check-in data is derived from the temporal
relationships (explained in Section 4.1.1) and co-visiting relationships (discussed in Section 4.1.2). Together, these
elements create a comprehensive representation of a user’s interests. The resulting embedding vectors convert these

preferences into a unique identification code, referred to as Xper.

4.1.4 Transformer. In this study, we utilize a transformer architecture [36], which processes input sequences without
relying on recurrent networks. In our previous work, TLR-M [16], we demonstrated that the transformer model can
handle multiple input features for next POI recommendation and queuing time prediction. However, the primary
limitation of the TLR-M model is its reliance on Euclidean distance for spatial dependencies, which assigns higher
preferences to nearby POIs. This approach fails to capture user interests accurately, as preferences are not strictly
based on proximity but rather on the significance of each POI. Additionally, the TLR-M model does not account for the
dynamic changes in user preferences over time.

To address these limitations, this paper employs Graph Convolutional Networks (GCN) to capture and dissect user
behavior patterns between POIs. The results from the GCN layers are then fed into the transformer encoder and decoder
modules. These modules effectively capture intricate non-spatial dependencies that contribute to user preferences,
offering a more comprehensive understanding of the user’s point-to-point interactions.

The transformer model uses multi-head attention to emphasize different factor influences simultaneously and
generates POIs representation score. Therefore, the model takes temporal co-visiting and user personalised features as

input. The input X; at transformer architecture is as follows:
Xt = Xtem + Xcov + Xper (14)

where Xtem, Xcov and Xper indicate the temporal, co-visiting and personalised features.
The transformer architecture takes three factors as input, uses a multi-head attention mechanism, and generates an

encoder output (0¢) transition value, as follows:

0e = LN(X; + FF(LN(X; + MulHead(Q.K.V)))) (15)

where LN(.), FF(.) and MulHead(.) represent layer normalisation, a fully connected feed-forward network and a multi-
head attention mechanism, respectively. The multi-head attention mechanism takes a query (Q), key (K) and value
(V) matrix from the input matrix. The transformer decoder takes the encoder output as its key and value and applies
a multi-head attention mechanism once again, passes it into the full forward layers and produces the output of the

transformer decoder:

04 = LN(dec(X;) + FF(LN (dec(X;) + MulHead(0e, 0e, MulHead(Q, K, V)))) (16)

where dec(X;) is the decoder input. Notably, the decoder and encoder inputs are the same, but the decoder input is
shifted one bit to the right to ensure that the current prediction ¢; depends only on the available outputs up to time #;_.
The decoder output o4 passes on the softmax function and gets the top-k candidates set based on the highest transition
probabilities.
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The objective function of the transformer part is used to find the best candidate set of POIs. That is why we define

the loss function as follows.

loss = —— Z [yilogf (H)) + (1 = yi)log(1 ~ f(H;))] (17)

where y; is the original output and f(H lt ) is the candidate set of POIs. We use Adam-optimiser [21] to train our model.

POI-Queue  (------------- 3
Time 1 Add best

i

|

1st

i :
9 S &l i Itierationl
- o) Candidate ! |
ol Py 1 ps)
Ched Generator )| ! —(ps) !
! ! | |
‘ i |
i ! ‘
! I I
| : |
! i i
1 i :
‘ | ! ond }
I +— | Itleratlonl
\_.@5 Candidate E> o o) —(py) |
Generator ! -g | \f |
I m . 1 - I
i Add best | (7 !
kp4 POI  ________ @Q‘

Output with anstruct

Queuing Time Itinerary

Fig. 4. Greedy policy-based itinerary construction model using candidate generation set.

4.2 Itinerary Construction Policy

The candidate generator model takes users’ travel sequences and recommends a POI set. The recommended POI set
is dynamic it differs from user to user and from time to time. Thus, constructing itineraries based on a once-selected
POI set would not be appropriate. The existing model applied POI scheduling technique based on POIs ranking, where
dynamic preferences were ignored. Therefore, to solve this challenge, we predict the next potential POIs set in each
iteration. Figure 4 shows our proposed itinerary construction steps. First, users start their journey at a particular location
and have their personalised start time. Our candidate generation step selects candidate sets based on user personalised

interest, temporal behaviours and co-visiting patterns impact. The output of candidate generation is defined as follows.
st = softmax(o(tl.) (18)

where s’ represents POIs set score at time t. Then, we select top-k items as next potential move using this score as
follows.
POI Score = Select(s”, top — k) (19)

where, POI Score represents selected top-k items selection score. Each time step, the candidate generator model
recommends candidate sets whose number depends on the top-k value. This top-k candidate set reduces the number
of POIs based on temporal and co-visit patterns. After that, we measure the queuing time of selected top-k POIs and
prefer queuing time-based users’ maximum satisfaction. Now, one question arises, why do we need queuing time for
the selected set of POIs instead of all POIs. There are two reasons. First, selected POIs are time-based appropriate POIs.
If we consider all POIs based on queuing time influence, it may recommend unavailable POIs because their queuing

time is around zero. Second, user preferences may be lost among the large set of POIs. To solve these two issues, we
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select top-k POIs set based on the user’s temporal preferences. Thus, in our proposed model, we have tried to balance
between user preferences and queuing time influence using top-k POIs selection as the next potential POI selection.

The following equation shows the updated top-k POIs score after incorporating queuing time influence.
R; = POI Score/Queue; (20)

where Queue; is the queuing time of candidate sets of POIs at current time ¢ and POI Score is the output of the candidate
generator model. The objective of the itinerary construction part is maximising the reward function and satisfy the
budget time constraint. We have seen that the model depends on multiple factors if we consider one specific factor
as the reward that may create an inappropriate recommendation. Thus, we need to design a reward that can balance
multiple factors’ influences. In the proposed model output, we get a POI learning score based on three factors. After
that, queuing time influences are applied to the score, which changes queuing time based on your preferences score.

Next, we find updated selected top-k POIs rank as follows.
POI Set = Rank(R;) (21)

Rank(.) returns POIs sets based on their corresponding score rank. Finally, our model selects one best POI as the next
POl in our itinerary if that POI visitation time (travelling, queuing and visiting time) is less than the current budget
time. All of these above-mentioned steps iteratively repeat until users reach end of their budget time.

The main goal of the itinerary recommendation is maximising the reward values. Finally, we build our proposed

DLIR model combining two parts of learning parameters as follows.

n

T
vel(0) = % Z Z Vg log g(ak|Ss) argmax Ry (22)
i=1 t=1
where the candidate generator selects a set of POIs to visitors that time and the itinerary contraction model insures
maximum reward values. The itinerary construction takes action (a;) from the candidates’ top-k actions until it exceeds
budget time.

T(s1,a1,s2) + T(s2,a2,83) +- -+ T(sp_1,ak,S) < B (23)

where T (s;—1, aj, si) is the total time to reach state s; from state s;—; by taking action a; and B is budget time.

Figure 4 depicts two iterations of our proposed itinerary construction steps. Assume user U; starts the tour plan from
location p; at time S;. Our candidate generation model takes this information as input and predicts top-3 {p2, ps, ps} as
the potential POI set for the next move. Then, we apply queuing time influence of these three POIs and their rank is
changed as {ps, p2, p¢}. Finally, the model selects the next POI p5 considering budget time. The model always selects
the best POI in a greedy approach if it is possible to visit within budget time. If a user does not have enough visiting
time then the model selects the next possible POI within the budget time. Using this approach at the end of the first
iteration user constructs itinerary p; — ps, which is used as input in the second iteration. In each iteration, budget
time is updated based on selected POI visiting time. This process continues until the user visits all POIs in the network

or reaches the end of the budget time.

4.3 Candidate Generator Algorithm

Our proposed DLIR model has two parts: selects candidate sets based on user’s preferences, co-visiting and periodic
influences and constructs itineraries applying an iterative process. The algorithm 1 describes the candidate set gen-
erator. The algorithm takes the data sequence as input and returns a model that recommends the next POL. First, we
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calculate visitors co-visiting matrix based on data (historical) sequence in line 1. In line 2, using GCN, we analyze the
connections and interactions in the data represented by the co-visiting matrix. This helps us make better, personalized
recommendations for users based on their past interactions, resulting in more accurate suggestions. In lines 3-12, we
build the model using a transformer-based encoder and decoder in line 6 and 7, respectively. This decoder output shows
the POI features representation at passes into the softmax layer to make POI feature normalization based on other
features in line 8. To train the model, we use the softmax entropy cross-loss function in line 9. We aim to minimise
the loss function in line 10. Then, update the required parameters to build the model in line 11. Finally, the algorithm

returns build in Candidate_Generator model in line 13.

Algorithm 1: Candidate Set Generate Model (Data)
Data: Data = Data sequence.
Result: Candidate_Generator Model
1 co-visiting_Matrix = Make_Covisiting_Matrix(Data)
2 GCN_values = GCN(co-visiting_Matrix)
3 for (p,t,u,g) < sample(trainSeq, GCN_values) do
4 x1, = Make_Input_Sequence(p,t,u,g)
5 I = x4, + PE
6 Using Equation 15 find O, = Encoder(I,)
7 Using Equation 16 fund decoder output Oy = Decoder(Oe, I¢)

8 g,= softmax(Oy)

o | loss=—3 TN, [yilog(gi) + (1 - yi)log(1 - §y)]
10 Optimise loss function

1 Update the parameters
12 end
13 Return Candidate_Generator Model

4.4 DLIR Algorithm

Algorithm 2 depicts the itinerary generation from Candidate_Generator model. Initialize the itineraries list with the
StartPOI as the first element in line 1. Then, POI is added iterative way into the itineraries as long as the remaining
budget time B is greater than or equal to zero in lines 2-17. In each iterative loop, the model generate a temporary
candidate set of POIs, Ctemyp, by using the Candidate_Generator model along with the current itinerary in line 3. After
that, calculate the queuing time for the top k POIs and store it in Qremp based on top k items in line 4. Furthermore,
update the candidate set Cremp using the update function, which considers factors like queuing time and budget
constraints in line 5. Select a set of POIs from Ctemyp and store them in the POIs variable. Subtract the time required to
visit each selected POI (including travel time and queuing time) from the budget B. If all POIs have become negative
values based on budget time in line 8, then double the k value for checking remain POIs visit probability. After selecting
a subset of POIs, choose the first POI in the list where the remaining budget time is positive. This ensures that the
algorithm selects the next POI to visit within budget constraints in line 12. In line 13 add the selected POI to the
Itineraries list as the next move. This process continues until the length of the Itineraries list is equal to the total number
of available POIs or if k has exceeded twice the total number of POIs. If either condition is met, break out of the loop in
lines 14-16. Finally, the algorithm returns the itineraries list as the recommended travel itinerary in line 18.
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Algorithm 2: DLIR ( Candidate_Generator, StartPOI, Q, B, k)
Data: Candidate_Generator = Candidate Generator Model, StartPOI = start point of itinerary, Q = POI Queuing
Time, B = budget time, k = top k value
Result: Itineraries
1 Itineraries = [startPOI]
2 while B > 0 do
3 Ctemp = Select candidate sets score using Candidate_Generator() Model and Itineraries

4 Qtemp = Find queuing time for top k POIs
d
5 C;Aepmzte = Update(ctemp, Qtemp, B, k)

6 POIs = Select POIs from C?gﬁ;tﬂ

7 B=B-{Visp, + Trap,p; + Qp;} V pi € POIs and pj € Itineraries[-1]
8 if VB < 0 then

9 k=k*2
10 continue;
1 end
12 select_POI = first(POIs[i]) where Bi[i] > 0
/* Update Itineraries by added selected POI as next move */

13 Itineraries = Itineraries + [select_POI]
14 if lenght(Itineraries) == totalPOIs or k > 2*totalPOIs then
15 ‘ Break;
16 end
17 end

/* Return Recommended Itineraries */

18 Return Itineraries

4.5 Computational Complexity

The proposed model time complexity depends on the candidate set generation step and iteration construction step,
where candidate generation takes maximum time. The itinerary construction time depends on the number of itineraries
and budget time. The baselines in itinerary constructions make a full itinerary considering heuristic, POIs rank and
probability. Thus, it is difficult to compare our proposed deep learning model-based itinerary construction complexity
because of different strategies. For example, one baseline [44] constructs an itinerary based on popularity and extends
the itinerary until it exceeds budget time. Another one constructs an itinerary based on distance. Thus, we compare
our model complexity based on the candidate set generator step, which is similar to the next POI recommendation.
The model’s complexity depends on user and POI representation at different time points. In the proposed model, we
have used a transformer architecture; thus, its complexity will be the same as transformer complexity. The transformer
model complexity depends on multi-head self-attention and softmax function complexity. Multi-head self-attention
complexity relies on dot products performing in a depth direction. Assume the query (Q) and key (K) dimensions are
n x m. The matrix multiplication of QK7 is the product of matrix n x m multiplied by a matrix m x n. Thus, the resulting
complexity is n?m. In the softmax function, n X n matrix is multiplied by n X m matrix, which complexity is also n?m. In
the candidate generator, we employ a transformer architecture that utilizes the attention mechanism. In this model, the
attention focuses on all Points of Interest (POIs), with their total number represented by I, which is expected to be much
smaller than n. Thus, the transformer replaces one self-attention on the whole input by n/1 self-attentions on [ places.

Therefore, the total complexity of the transformer model is O(n X I x m). The existing TLR and TLR-M models also used
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the transformer architecture that the complexity is also O(n xIx m). Although different input feature numbers make the
complexity variation, the three models’ TLR, TLR-M, DLIR complexities are the same. We get ST-RNN time complexity
is O(nl(3sm? + 2m) + 2nm) ~ O(nlm?). Considering the attention weights, time complexity of ATST-LSTM model is
O(nl(9m? + 20m) + 2nm) =~ O(nlm?) [20]. STACP model used Matrix Factorization to find the frequency matrix based
on two low-rank matrices U € R"™*" and L € R™*!. Where the hidden variable is m, the sample size is represented
by n, the maximum number of check-ins [, length of the time window is s (if required). APOIR model used Matrix
Factorization and Generative adversarial networks (GANSs) for training data. Thus, its total time complexity is O(nml).

Table 2 shows the proposed models and baseline complexity analyses.

Table 2. Proposed DLIR model and baseline complexity analyses.

Model STRNN  ATST-LSTM STACP APOIR TLR TLR-M  DLIR

Complexity  O(nlsm?) O(nlm?) O(nml) O(nml) O(nlm) O(nlm) O(nlm)

5 EXPERIMENTS

This section presents the environment, datasets, evaluation metrics, baseline details and results. The results analyses of
our proposed DLIR and numerous baselines are performed based on two sets of evaluations. The first one is evaluating
the candidate set generation and the second one is constructing itinerary recommendations. We compare how accurately
the proposed model recommends top-k POIs and itineraries than the existing state-of-the-art models. After that, we

show the importance of different features in the ablation study.

5.1 Environments

We implemented the proposed DLIR and baseline methods in Python and used TensorFlow and Keras libraries for the
deep-learning models. The experiments were conducted on a 2.40 GHz Intel Core i5 machine with 8GB RAM running
Windows 10. To evaluate the performance, we tested various parameter settings and found that the best results were
obtained with a dropout rate of 0.5, learning rate of 0.001, number of heads of 4, hidden layer size of 128, and 200
training steps. Each model was executed five times using five-fold cross-validation, and the metric values were averaged

across the runs.

5.2 Datasets

We conduct extensive experimental analysis based on two categories of datasets: theme parks [26] and cities [28]. The
theme park and city datasets use Flickr geo-tagged photos; here, the time at which the first photo is taken is considered
the check-in time, and the time at which the last photo is taken is the check-out time. Queuing time is the time spent
waiting to get access to a POI after arrival. From the sequence of photos, we capture the visiting time, travel time and
queuing time [16, 26]. Visiting time represents the average time difference between all users’ first and last photo taken
time at a POL Travel time is defined by the distance between two POIs and travel mode. In the theme park datasets, we
assume that the mode of travel is walking and that the travel speed is 5km/h; for the city datasets, the travel mode
is by car and the speed is 50km/h. Queuing time is the time spent waiting to access the POI and is calculated by the
time difference between the first photo taken at two consecutive POIs with visiting time and travel time subtracted.

As the above shows, it is difficult to ascertain these three variables from the travel sequence. However, the total time
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(travel, visiting and queuing) from one POI to another POI is equivalent to the difference in check-in times between
two sequential POIs. Figure 5 illustrates this idea. Here, user u; checks—in at POIs p; and p, at 10:30 am and 11:30 am,
respectively. This time difference is divided into three parts: visiting time (10:30 am - 11:00 am), traveling time (11:00
am — 11:20 am) and queuing time (11:20 am - 11:30 am), respectively. In this context, the waiting time in the queue is
influenced by the quantity of visitors awaiting access to the Point of Interest (POI). As a result, the waiting time can be

approximated by considering the arrival at the POI and the subsequent access, as explored in this research.

' P1 (11:20 am) <= & P2

i I vVisit Time | Travel Time *{ Queue | I
uy v v Time ¥y v
Check-in / Check-out / Check-in / Check-out /
First Photo Last Photo First Photo Last Photo
(10:30 am) (11:00 am) (11:30 am) (11:50 am)

Fig. 5. Check-in or photo sequence relationship with a visit, travel and queue time.

Here, we construct three kinds of sequences: recent, periodic, and trending. If two consecutive POI visit times
difference is greater than 8 hours, then we construct a new sequence [26]. The sequence may be based on other visit
times differences e.g., 6, 10 and 12 hours. We filter out the POIs and users who have less than 3 checks in records for all

the other datasets. Datasets details after filtering are summarized in Table 3.

Table 3. Description of parameters for the various datasets.

Category Dataset Photos Visits Users POIs
Disney Hollywood (DisHolly) 57,426 41,983 1,972 13

Theme Epcot 90,435 38,950 2,725 17
Park Magic Kingdom (MagicK) 133,221 73,994 3,342 27
California Adventure (CaliAdv) 193,069 57,177 2,593 25

" Edinburgh 82060 33944 1454 29

Budapest 36,000 18,513 935 39

City Toronto 157,505 39,419 1,395 30
Melbourne 17,087 5,871 911 242

In our results analysis, we divide our datasets into three parts: training, validation and testing. We applied five-fold-
cross validation methods to make 20% testing data and 80% training and validation data. Among the 80% data, we select
first (previous) 70% check-ins or taken photos data in a sequence as training data and the remaining last (recent) 10% as
validation data.
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5.3 Baseline Algorithms

In this paper, our proposed approach DLIR has two components: selecting the top-k POIs as candidates and constructing

these into itineraries. Here, we also compare our approach against two types of baselines: next top-k POIs recommenda-

tion and itinerary recommendation. To evaluate the top-k POI recommendation model performance, we consider six

existing baselines. We use the baseline codes from GitHub that the authors shared and implement other models that are

not publicly available. The details of the baselines are as follows:

ST-RNN [30]3: This is an RNN-based next POI recommendation model that incorporates both geographical and
temporal information. In the ST-RNN model, time-specific transition matrices and distance-specific transition
matrices are used to conduct temporal impact and geographical distance impact analyses, respectively.
STACP [32]*: This is an MF-based model that recommends top-k POIs considering both geographical and
temporal information. The model utilises temporal and static MF to capture users’ temporal and static behaviours.
APOIR [50]°: This is an adversarial model that recommends top-k POIs based on the learned distribution, which
maximises the probabilities of the reward framework. The APOIR model utilises user preference distributions
and develops a reinforcement learning model to maximise reward functions to recommend appropriate POIs.
ATST-LSTM [20]°: This is an attention-based spatiotemporal LSTM-based next POI recommendation approach
that employs spatiotemporal contextual information derived from the check-in sequence. The ATST-LSTM
applies a user’s check-in spatial and temporal vector information to predict the user’s future check-in patterns.
TLR [16]: This model was the first to apply transformer architecture to predict the next appropriate POL
The model utilises users’ check-in information to capture users’ spatial and temporal significance for POI
recommendations.

TLR-M [16]%: This is a multitasking-based transformer architecture used in POI recommendation that recom-

mends POI and predicts queuing time simultaneously.

To evaluate the results for the full itinerary recommendations, we can compare them against baselines that construct

full itineraries without modification. The selected baselines that construct a full itinerary are as follows:

EffiTourRec [17]°: This model uses an efficient heuristics and an effective pruning technique to construct
itinerary recommendations via adaptive MCTS, which maximises user interest and minimises queuing time.
PersQ [26]: Full itinerary recommendation that maximises popularity and interest while minimising queuing
time and ensuring that the itinerary is completed within a time budget.

IHA [44]: A heuristic-based itinerary recommendation that adds POIs one by one until the budget time is
reached.

DCC-PersIRE [6]: An unsupervised deep learning—based itinerary recommendation model that integrates POI
content and POI categories to predict user interest and visit duration.

GPop: The model iteratively adds unvisited POIs from among the three most popular POIs and creates a POI

sequence from the visitor’s starting point to their endpoint.

3https://github.com/yongqyu/STRNN

“https://github.com/rahmanidashti/STACP

Shitps://github.com/APOIR2018/APOIR

®https://github.com/drhuangliwei/An- Attention-based-Spatiotemporal-LSTM-Network-for-Next- POI-Recommendation
"https://github.com/sajalhalder/TLR

8https://github.com/sajalhalder/ TLR-M

“https://github.com/sajalhalder/EffiTourRec
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e GNear: The method iteratively adds an unvisited POI from among three nearby POIs and creates an itinerary
from the visitor’s starting point to their endpoint.

e BERT-Trip [22]': It is a self-supervised model that learns trip representations using a Siamese network
and trip augmentations, without needing negative samples. To create a similar environment for our itinerary

recommendation, we have allocated a time budget for constructing the itinerary.

5.4 Evaluation Metrics

To evaluate the top-k POI candidate sets quality, we have applied the following evaluation metrics that are frequently
used in similar types of works [16, 31, 43].

e Precision@k: Assume that P, be next POIs in the actual visit sequence and Py be the top k POIs recommended.
The precision represents the ratio of the next top-k POI that is present in the original next POIs. We can define

Precision@k as follows.

|P r ﬂ P k|
Pl

o Recall@k: We use the same actual and recommended POIs P, and Py respectively. The Recall@k represents the

Precision@k = (24)

ratio of the real next POI that is also present in the top-k recommended POI for the user u is defined as follows.

P-NP
Recall@k = rO Pkl (25)
P
e F1-Score@k: The harmonic mean of both precision and recall of a user u, is defined as follows.
2 X Precisi k x Recall@k
F1 - Score@k = X Precision@k X Recall@ (26)

Precision@k + Recall @k
Besides POI recommendation, we have evaluated our model for itinerary recommendation. To evaluate the performance
of the proposed DLIR model and baselines in itinerary recommendations, we use the following standard evaluation

metrics that have been used in [5, 26, 28].

e Precision: The ratio of POI recommended itinerary I that are present in a visitor’s real-life visit sequence. Let
P,.q1 be the set of POIs in the real visit sequence and Py, be the set of POIs recommended in itinerary I, the

tour precision is defined as:

[Preal (1 Prec|
|Prec |

e Recall: The proportion of POI visits in a visitor’s real-life visit sequence that also be present in the recommended

Precision = (27)

itinerary I. Using the same notation for P,.,; and Pyec, the tour recall is defined as:

1Preat (1 Prec|
|Preal|

e F1-Score: The harmonic mean of both tour recall and tour precision of an itinerary I, defined as:

Recall = (28)

2 x Precision * Recall
F1—Score = — (29)
Precision + Recall

For proposed model significance, we use paired t-test method and it shows that DLIR outperforms at least 96.0%

confidence, where p < 0.04.

Ohttps://github.com/KuoAiTe/BERT-Trip
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5.5 Performance Analysis

The results analyses for our proposed DLIR and the numerous baselines are obtained based on two sets of evaluations: the
first involves evaluating the candidate set generation and the second involves constructing itinerary recommendations
so that users get maximum satisfaction. We compare the accuracy of the proposed model’s top-k POI and itinerary

recommendations to those of the existing state-of-the-art models.

Precision@5 Recall@5
N ST-RNN N APOIR N TLR-M N ST-RNN N APOIR N TLR-M
BN ATST-LSTM B TLR W DLIR BN ATST-LSTM B TLR B DLIR
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’ BN STACP
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Fig. 6. Performance analyses for the proposed DLIR and existing baselines in terms of Precision@5, Recall@5 and F1-Score@5 on the
eight datasets.

5.5.1 Candidate Set Generation Performance. Figure 6 depicts the evaluation measure results for the candidate set
selection on the eight datasets. The results show how accurately the proposed model can recommend POI sets through
comparison with the original visited POIs. The figure illustrates that the proposed model DLIR outperforms the various
baselines. It shows that DLIR model outperforms the baselines 2.51% to 34.83% (minimum performance is 2.51% on
the DisHolly dataset and maximum performance is 34.83% on MagicK dataset) and outperforms on average 11.09% in
terms of Precision@5 values. The proposed model outperforms the baselines 2.58% to 34.77% (minimum performance is
2.58% on the DisHolly dataset, maximum performance is 34.77% on the MagicK) and on average 11.37% in terms of
Manuscript submitted to ACM
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Precision@10 Recall@10
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Fig. 7. Performance analyses for the proposed DLIR and existing baselines in terms of Precision@10, Recall@10 and F1-Score@10 on
the eight datasets.

Recall@5 values. It also outperforms the baselines on average by 11.29 % in terms of F1-score@5 values. Among the
baselines, it can be seen that the transformer-based single task model TLR outperforms other recurrent attention-based
models. The multi-tasking model TLR-M performs best among the baseline models. The results show that our proposed
DLIR model outperforms all the baselines, including TLR-M [16]. There are two reasons: the DLIR model (i) focused
on three temporal patterns instead of only recent check-in, and (ii) used co-visits movements behaviour instead of
linear distance-based spatial dependencies. Our proposed transformer-based model can capture different periodic
dependencies along with user movement patterns than the baseline approaches. Mainly we have used GCN-based
visitors’ movement frequency graph to capture POI to POI movement dependency. It can capture the user movement
relationships and select an appropriate candidate set.

We have evaluated our model based on other k values 5 and 10. It shows similar result patterns. Figure 7 shows
the results of top-10 evaluation metrics based on eight datasets. It shows that the proposed DLIR model outperforms
baselines minimum 2.62% on Edinburgh dataset, maximum 23.37% on the Melbourne dataset and on average 9.19%
in terms of Precision@10 values. The proposed model outperforms minimum 2.50% on Edinburgh dataset, maximum
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22.43% on Melbourne dataset and on average 8.89% in terms of Recall@10 values. It also outperforms on average 9.08%

in terms of F1-score@10 values.

Table 4. Performance comparison of DLIR and baselines. Bold and underline numbers represent the best and second-best results
respectively.

Datasets IHA GPop GNear DCC-PersIRE PersQ EffiTourRec BERT-Trip DLIR

DisHolly 0.246 0.439 0.411 0.392 0.375 0.472 0.475 0.673
Epcot 0.299 0.415 0.333 0.377 0.337 0.459 0.516 0.608
g MagicK 0.314 0342 0.292 0.372 0.272 0.388 0.310 0.604
% CaliAdv 0.293 0.361  0.280 0.372 0.252 0.376 0.297 0.591
E Budapest 0.206 0.428 0.273 0.283 0.274 0.348 0.228 0.547
Toronto 0.207 0.248  0.283 0.290 0.293 0.351 0.239 0.572
Edinburgh 0.102 0.122  0.243 0.269 0.238 0.325 0.287 0.662
Melbourne 0.252 0.263  0.098 0.259 0.123 0.284 0.183 0.447
DisHolly 0.168 0.297 0.334 0.433 0.435 0.444 0.229 0.451
Epcot 0.276  0.272  0.338 0.459 0.428 0.432 0.192 0.467
= MagicK 0.219 0.212  0.282 0.414 0.392 0.394 0.228 0.428
§ CaliAdv 0.283 0.242 0.314 0.414 0.417 0.408 0.129 0.423
2 Budapest 0.434 0.282 0.411 0.481 0.517 0.519 0.159 0.527
Toronto 0.306 0.142  0.451 0.486 0.431 0.431 0.139 0.465
Edinburgh 0.166 0.200 0.273 0.350 0.355 0.379 0.075 0.428
Melbourne 0.316 0.231  0.394 0.382 0.364 0.403 0.154 0.424
DisHolly 0.191 0.341  0.350 0.405 0.384 0.437 0.289 0.505
Epcot 0.273 0314 0.317 0.399 0.348 0.398 0.264 0.483
©  MagicK 0.240 0.249  0.264 0.396 0.297 0.359 0.243 0.437
<n|8 CaliAdv 0.269 0.272  0.269 0.414 0.290 0.378 0.166 0.449
= Budapest 0.261 0323  0.307 0.357 0.317 0.377 0.173 0.464
Toronto 0.237 0.178  0.312 0.369 0.338 0.390 0.161 0.485
Edinburgh 0.121 0.134  0.269 0.358 0.285 0.359 0.116 0.487
Melbourne 0.285 0.226  0.123 0.326 0.157 0.335 0.154 0.393

5.5.2  ltinerary Recommendation Performance. Our proposed model not only selects the next POI accurately, but it also
outperforms itinerary recommendation baselines. Table 4 presents the performance of the DLIR and the baselines when
recommending the entire itinerary. The table shows, our proposed DLIR significantly outperforms all baselines on the
precision, recall and F1-score evaluation metrics. The proposed model outperforms the existing model for two main
reasons. First, the GCN model of the DLIR captures users’ POI-to—POI co-visiting movement patterns more effectively
than the linear spatial distance relationships used by the other methods. Second, periodic temporal influences have
been combined appropriately by the proposed approach to capture time-dependent user activities.

The existing Gpop and GNear results show that users’ preferences do not only depend on popular and nearby POIs.
The PersQ and EffiTourRec models are based on queuing time and static user preferences, where temporal and dynamic
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preferences are ignored. Dcc-PresIRE recommends an itinerary based on user interests, but queuing time and preference
changes are not considered. Our model outperforms all evaluation metrics because it captures personalised information
regarding users’ time-related preferences and effectively creates schedules that account for those preferences, thereby
improving user satisfaction. Table 4 shows the proposed model outperforms 23 evaluation metrics among 24 evaluation
metrics. Among the baselines, EffiTourRec performs best baselines due to its effective POI selection technique. Therefore
the EffiTourRec model did not consider the user’s periodic preferences and visitor movements. According to the best of our
knowledge, our proposed DLIR model applied user dynamic preferences considering periodic and recent check-ins and
non-linear spatiotemporal POI-to-POI movements by co-visiting influence simultaneously in itinerary recommendation.
We can see that our model outperforms baselines minimum 24.51% (DLIR model score is 0.608 and baseline EffiTourRec
model score is 0.459) on Epcot and maximum 50.91% (DLIR model score is 0.662 and baseline EffiTourRec model score
is 0.325) on Edinburgh dataset in terms of precision evaluation metric. Except for the Toronto dataset our proposed
model outperforms the baseline from a minimum 1.42% on the CaliAdv dataset to a maximum 11.45% on the Edinburgh
dataset in terms of recall values. We know precision and recall values depend on the number of real visited POIs and
recommended POIs. To balance these two evaluation metrics we apply F1-score matric. Table 4 presents our model
that performs best in the F1-score value. It shows that the proposed model outperforms the baselines from a minimum
7.79% on CaliAdv dataset to a maximum 26.28% on Edinburgh dataset in terms of the F1-score value. It is clear that the

proposed model outperforms all other baselines in all datasets except the recall score on the Toronto dataset.

5.6 Ablation Studies

In our proposed DLIR model, we have applied three main features: co-visiting patterns, user periodic behaviour influence
and personalised influence. These features have a significant influence on full itinerary recommendations. Most of the
existing baselines applied spatial distance-based visitors’ movement patterns to capture spatial dependencies from
POI-to-POI The GCN model captures all POI-to-POI relationships based on co-visitors and popularity factors.

Figure 8 shows the comparison of the results among DLIR model and without each component. The DLIR_wGCN is
without GCN, DLIR_wPeriodic is without temporal and DLIR_wPersonalised is without personalised influence. In the
DLIR_wGCN model, we use the same DLIR model, except it has no GCN part. It is clear that the GCN-based model
remarkably outperforms the one without the GCN model. It has been shown that without GCN influence, the model
performance decreases by 18.62% in precision, 18.71% in recall and 18.75% in F1-score in the California Adventure
dataset. It also decreases 4.97% and 22.54% F1-score in Edinburgh and Melbourne datasets, respectively. The periodic
pattern has a significant influence on POI recommendations. To show the significance, we use a without periodic
patterns-based DLIR model called DLIR_wPeriodic. In DLIR_wPeriodic model, we avoid periodic embedding (recent,
periodic and trends) parts from the proposed DLIR model. Figure 8 shows that without a periodic pattern-based model,
these scores decrease performance from 6.3% to 31.76 % in precision, 6.58% to 31.47% in recall and 6.58% to 31.69% in
F1-score metrics. It proves that the periodic pattern is important for capturing user movement patterns.

Personalised interest plays a significant role in the next POI recommendation. To show the significance of personalised
interest, we used DLIR_wPersonalised that uses DLIR model except for personalisation information. Figure 8 shows
that DLIR outperforms the DLIR  wPersonalised model for these datasets and across the different evaluation metrics. It
depicts that without presonalised information, the proposed model performance decreases by 1.05% on Edinburgh and
11.11% on the Melbourne dataset in F1-score. The same patterns of decrease are also observed in the other evaluation

metrics.
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Fig. 8. Ablation studies of proposed models in terms of Precision@10, Recall@10 and F1-Score@10 for CaliAdv, Edinburgh and
Melbourne datasets.

In this study, we utilize a popularity-based co-visiting patterns in GCN model as the foundation of our work. A natural
question that arises is: How would the results differ if a distance-based patterns in GCN model were used instead?
To address this, we conducted an additional set of ablation studies to compare the performance of our popularity-
based GCN model against a distance-based pattern as GCN model. The results, presented in Table 5, demonstrate that
our original model, DLIR (popularity-based GCN), consistently outperforms the distance-based model, referred to as
distDLIR. Across all datasets, except for the Budapest dataset in the precision metric, the DLIR model consistently
outperforms the distDLIR model. Specifically, in terms of recall and F1-score, the DLIR model demonstrates superior
performance across all datasets. These results validate that the popularity-based GCN model proposed in this study

enhances recommendation performance compared to the distance-based approach.

5.7 Performance Comparison between Greedy and MCTS-based Model

It has been seen that existing models [17, 28] utilized MCTS based reinforcement model to construct itineraries. Thus,
one question may arise, why do we use the greedy model instead of MCTS based reinforcement model? The answer is
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Table 5. Performance comparison between the popularity-based co-visiting GCN model (DLIR) and the distance-based co-visiting
GCN model (distDLIR)

Metrics Model DisHolly Epcot MagicK CaliAdv Budapest Toronto Edinburgh Melbourne

Precisi DLIR 0.673 0.608 0.604 0.591 0.547 0.572 0.662 0.447
recision
distDLIR 0.652 0.589 0.581 0.556 0.616 0.552 0.656 0.422
Recall DLIR 0.451 0.467 0.428 0.423 0.527 0.465 0.428 0.424
eca
distDLIR 0.391 0.458 0.379 0.381 0.352 0.452 0.407 0.406
F1-S DLIR 0.505 0.483  0.437 0.449 0.464 0.485 0.487 0.393
-Score
distDLIR 0.475 0.468 0.412 0.417 0.415 0.476 0.456 0.364

straightforward. The greedy model can select the best next POI as a next move whereas MCTS based model tries to
balance between exploiting and exploring parts. We further justify this with additional experiments and develop MCTS
based itinerary construction model using POI candidate sets generation and name it DLIR_MCTS. In the exploitation
part, it tries to maintain user preferences whereas the exploration part assumes the user will get satisfaction without
previous experience. This may potentially reduce user satisfaction because MCTS exploring part performs within all
unexplored POIs. Thus, it can select the POI which is not available or closed in that time. Table 6 shows the comparison
of the results between greedy and MCTS-based full itinerary construction results. It shows that the proposed model
DLIR performs better than the MCTS-based model from a minimum 7.58% on the DisHolly dataset to a maximum
44.29% on the Melbourne dataset in terms of precision value. It also outperforms baselines from a minimum 2.36% on
Epcot dataset to a maximum 29.98% on Budapest dataset in terms of recall value and a minimum 2.06% on MagicK

dataset to a maximum 29.26% on the Melbourne dataset in terms of F1-score.

Table 6. Performance comparison between greedy and MCTS-based itinerary construction model.

Dataset Precision Recall F1-score
DLIR_MCTS DLIR | DLIR_MCTS DLIR | DLIR_MCTS DLIR
DisHolly 0.622 0.673 0.434 0.451 0.489 0.505
Epcot 0.481 0.608 0.456 0.467 0.447 0.483
MagicK 0.418 0.604 0.411 0.428 0.384 0.437
CaliAdv 0.419 0.591 0.406 0.423 0.396 0.449
Budapest 0.383 0.527 0.369 0.527 0.369 0.464
Toronto 0.438 0.572 0.404 0.465 0.438 0.485
Edingburgh 0.415 0.662 0.412 0.428 0.382 0.487
Melbourne 0.249 0.447 0.413 0.424 0.278 0.393

5.8 Execution Time Comparison

The time complexity of the POI recommendation model is important because it reveals the balance between how well
the model performs and how much computing time it needs. Understanding this helps determine if the approach is
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practical for real-world use and if the accuracy gained is worth the computational effort. It also helps compare it with
other methods to ensure the complexity is justified by its benefits and scalability. Table 7 shows the execution time
comparison for the proposed model and baselines. Our main goal of this paper is to recommend full itineraries. Here,
we consider full itinerary baselines to compare our execution time comparison. Most of the existing baselines are
heuristic-based whereas our model is a deep learning based. We know the deep learning model takes time to train the

model and the training model time also depends on parameters. It is clear that our proposed model takes a long time for

training.
Table 7. Candidate set generation execution time (sec) comparison for the proposed model and baselines.
Category  Models DisHolly Epcot MagicK CaliAdvn Buda Toro  Edin Melbourne
Non Deep | STACP 35.5 29.80 36.46 27.51 11.09 1634  19.67 10.99
STRNN 2135 232.89 536 301.22  100.07 134.7 120.78 78.07
2 ATST-LSTM 97.8 103.06  418.91 175.65 17.04  34.7  24.44 35.78
~§ b APOIR 234.7 251.88  439.19 264.49 78.96  128.7 101.67 183.75
S eep
&= TLR 65.4 54.09 58.98 84.38 83.98 87.7 75.53 95.86
TLR-M 376.97 27296  660.76 608.82  386.02 297.70 388.44 535.54
DLIR 250.15  281.06  242.52 222.03  159.32 332.04 365.40 105.54
- Non Deep | STACP 3.15 2.36 5.31 3.02 2.53 3.5 2.61 13.24
'% STRNN 2.17 1.09 2.42 1.77 2.89 4.67 6.13 0.395
% ATST-LSTM 1.02 1.13 3.11 1.52 3.23 2.99 3.9 0.47
? D APOIR 5.7 8.61 7.83 8.22 8.09 4.5 7.29 12.47
eep
ED TLR 4.5 3.22 3.11 451 3.40 5.2 3.45 3.57
E TLR-M 14.81 8.93 16.34 14.15 11.19 8.96 9.22 15.19
DLIR 5.68 8.99 5.41 5.99 4.96 12.84  ‘12.76 3.82

Table 8 shows the total execution time of constructing itineraries among our proposed DLIR model and baselines.
This table shows that our proposed model performs better than the existing PersQ, EffiTourRec and DCC-PresIRE
models. Although our proposed model takes time for training candidate generator steps, constructing itineraries is
faster because we use a straightforward approach to recommend full itineraries. PersQ and EffiTourRec used Monte
Carlo Tree Search, where tree size depends on the number of POIs and the execution time depends on the maximum
loop. We applied maximum loop = 100 for both of these two algorithms. DCC-PresIRE constructs itineraries based on
all possible solutions that are time-consuming. In this comparison, we avoid IHA, GPop and GNear approaches because
they are heuristic-based approaches and added POIs until they reach the end of budget time. These three models can

not capture dynamic user personalised interest and spatiotemporal impacts.

6 SIGNIFICANCE AND IMPACT

Our proposed DLIR recommends an itinerary considering dynamic user preferences and the influence of queuing
time in real-life applications, such as tourism and trip planning. Itinerary recommendation or planning has attracted
interest from academia and industry because it is a trillion-dollar industry. The model appropriately accounts for both
Manuscript submitted to ACM
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Table 8. Itinerary recommendation execution time (Second) comparison for the proposed DLIR model and baselines.

Models DisHolly Epcot MagicK CaliAdv Budapest Toronto Edinburgh Melbourne

PersQ 24147  6487.2 14850.0 10850.4  6609.6 3972.3 5522.4 31167.5
EffiTourRec 2296.40 4356.23 9456.34 7304.53  3708.3 2328.5 4590.3 12564.5
DCC-PresIRE  890.61  1487.5 3842.05 3269.04 4026.22 1449.98 5890.33 3845.80
DLIR 1533.32 1854.34 1696.65 1424.21 1460.44 2157.78  1242.52 4321.34

user interest and the negative impact of waiting time, which are crucial in these applications. Due to the COVID-19
situation, the influence of queuing time has increased rapidly; we now have to queue in many more locations to
access our daily necessities. The model helps with recommending tour plans to users based on personalised user
preferences, including their starting time and time budget, in a way that enables users to achieve maximum satisfaction.
In POI recommendation, queuing time and user preferences must be considered if users are to be happy with their
recommended tour plan. In this paper, we consider temporal preference changes to construct an itinerary that could
save budget time among visitors. The influence of queuing time is also significant in various challenging real-life
applications, such as medical science. If someone needs surgery but a preferred doctor’s appointment is not available
due to a long queue time, waiting for a long period may constitute a risk to life; under these circumstances, being able

to access another doctor may save the patient’s life.

7 CONCLUSION

In this paper, we have proposed a deep learning-based itinerary recommendation model that contributes to both POI
and itinerary recommendations. The proposed model is simultaneously applicable to both itinerary recommendation
and POI recommendation, and we have shown that it outperforms the state-of-the-art models in experimental results
on eight datasets. By using a candidate generator with a GCN model and a transformer, we are able to capture users’
co-visits patterns and spatial and temporal feature dependencies to select appropriate candidate sets for the users.
The scheduling part then constructs itinerary recommendations that give users maximum satisfaction. Our model
can efficiently capture complex POI network traversal patterns and multiple periodic patterns, making it a useful tool
for trip-planning applications. We observed that our proposed model outperformed 95.8% (23 out of 24) of evaluation
metrics in itinerary recommendation, which demonstrates the effectiveness of our model in capturing users’ preferences
and generating itinerary recommendations that maximize user satisfaction.

This work does not consider users’ social networking influence for POI recommendations, and this is an area that
could be explored in future research. Additionally, our proposed model could be further refined and optimized for even
better performance. Nonetheless, we believe that our work represents a significant step forward in the field of itinerary

and POI recommendation, and we hope that it will help users to plan more satisfying and enjoyable trips.
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