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Abstract

LLM-based autonomous agents have recently shown strong
capabilities in solving complex industrial design tasks.
However, in domains aiming for carbon neutrality and
high-performance renewable energy systems, current Al-
assisted design automation methods face critical challenges
in explainability, scalability, and practical usability. To ad-
dress these limitations, we introduce Physics-Informed Au-
tonomous Agent (PHIA), an LLM-driven system that auto-
mates modulation design for power converters in Power Elec-
tronics Systems with minimal human intervention. In contrast
to traditional pipeline-based methods, PHIA incorporates an
LLM-based planning module that interactively acquires and
verifies design requirements via a user-friendly chat interface.
This planner collaborates with physics-informed simulation
and optimization components to autonomously generate and
iteratively refine modulation designs. The interactive inter-
face also supports interpretability by providing textual ex-
planations and visual outputs throughout the design process.
Experimental results show that PHIA reduces standard mean
absolute error by 63.2% compared to the second-best bench-
mark and accelerates the overall design process by over 33
times. A user study involving 20 domain experts further con-
firms PHIA’s superior design efficiency and usability, high-
lighting its potential to transform industrial design workflows
in power electronics.

Introduction

As global temperatures rise due to climate change, transi-
tioning power generation systems toward carbon neutrality
is increasingly urgent. A key component of this transition is
the integration of renewable energy sources (RES) into the
power grid. Power Electronics Systems (PES) are critical
to this effort for three primary reasons (Lin 2022). Firstly,
power converters within PES transform the direct current
(DC) output from solar panels or wind turbines to alter-
nating current (AC), facilitating the seamless integration of
RES into the AC grid. Secondly, PES manages power during
peak and off-peak periods, guiding the charge and discharge
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processes of energy storage units. Lastly, it upholds grid
stability through functions like voltage regulation and reac-
tive power compensation. Achieving the desired outcomes
necessitates meticulous modulation of power converters in
PES, which involves controlling their switching to manage
output voltage or current.

The escalating adoption of RES and the burgeoning scale
of multi-resource power systems complicate the modulation
design for power converters within PES. The diversity of en-
ergy sources linked to the power grid intensifies system com-
plexity. As more converter subsystems interlink, the modula-
tion design problem’s dimensionality surges. Consequently,
identifying an optimized design solution through manual
computation becomes infeasible given this complexity. As
cities worldwide embrace multi-resource power systems,
modulation designs must be customized, catering to particu-
lar geographies and application objectives. Oftentimes, these
objectives can conflict, further complicating matters.

The recent advancements in artificial intelligence (AI) and
Large Language Models (LLMs) offer a promising solution
to these modulation design challenges through automation.
Emerging research has introduced Al-centric modulation
design techniques. For instance, recent works explore the
use of an LLM with in-context learning for modulation de-
sign (Lin et al. 2024). Extreme gradient boosting algorithm
(XGBoost) was utilised to construct the surrogate model
for the triple phase shift modulation strategy for the dual
active bridge (DAB) converter using training data sourced
from simulation tools or hardware prototypes (Lin et al.
2023a). Subsequently, a differential evolution algorithm col-
laborates iteratively with XGBoost until optimal modula-
tion parameters are identified. Likewise, the Q-learning al-
gorithm, a conventional reinforcement learning technique,
can be trained offline to derive optimized modulation pa-
rameters (Tang et al. 2020). While innovative, these methods
suffer from several drawbacks:

1. The training of these Al models is often data-intensive,
with significant demands for an extended and tedious
data collection through extensive simulations or hard-
ware experiments.

2. For complex tasks, training or finetuning large models



are also computationally intensive and consume a large
amount of energy to train and serve.

3. Deploying AI models as unexplainable black boxes
severely restricts their industrial adoption.

4. The current techniques focus on specific modulation
strategies or pre-established design goals, which limits
the scalability of such automation.

5. Existing methods require extensive human involvement
in the whole design process which makes the design pro-
cess inefficient.

In recent years, LLMs, such as GPT-4 (OpenAl 2023),
Palm (Anil et al. 2023) and LLaMa (Touvron et al. 2023)
demonstrates superior performance in natural language
understanding and generation. Furthermore, recent works
introduce LLM-based autonomous agents which extend
LLM’s capacity from simply performing reasoning and gen-
erating content to actions and control (Wang et al. 2024).

In our work, we investigate the potential of using LLM-
based autonomous agents for downstream task automation
in Power Electronics Systems. Specifically, we introduce
PHIA, a Physics-Informed Autonomous Agent for power
converter modulation design, enabling users to produce high
quality modulation designs with minimal human supervi-
sion.

PHIA first uses a LLM-based planner to process user re-
quirements and generate a set of design specifications. Sub-
sequently, the agent invokes a set of system design tools that
consist of physics-informed surrogate models and optimiza-
tion algorithms. In the design process, the tools iteratively
derives optimal modulation parameters tailored to users’ de-
sign specifications. Finally, the optimal design parameters
and performance metrics will be returned to and visualised
for the users to achieve an explainable design process.

The contributions of this paper are as follows:

* We propose PHIA, a physics-informed autonomous
agent that streamlines the power converter modulation
design process. Comprehensive experiments show the
strong performance of PHIA, statistically outperforming
the best baseline model with 63.2% lower error for low-
data scenario, and 23.7% lower error for high-data sce-
nario.

* We propose a hierarchical physics-informed surrogate
model as a design automation tool for power converter
modulation, which outperforms benchmarks in accu-
rately predicting power converter performance even in
extreme scenarios where the data is sparse.

e Qur user study with 20 experts demonstrates that the de-
sign time with PHIA is over 33 times faster than conven-
tional methods, showing superior efficiency in empirical
practice with minimal human supervision.

Problem Statements
Power Converter Phase Shift Modulation

Within the renewable energy systems sector, power convert-
ers need to work in coordination with other components to
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Figure 1: An example of power converter application: the
DAB (Dual Active Bridge) converter serves as a DC trans-
former of the DC-DC power grid, offering galvanic isolation
and regulating power and voltage between DC buses. Modu-
lating its switches directly affects the system operating per-
formance, including power transfer efficiency, voltage regu-
lation, and stability of the interconnected buses.

ensure optimal functionality. Figure 1 depicts a classic appli-
cation of a particular power converter, the dual active bridge
(DAB) converter. This converter functions as a DC trans-
former, connecting various DC buses to facilitate the utiliza-
tion or storage of power produced by RES (Lin, Zhang, and
Li 2021). The phase shift modulation technique is employed
to regulate the current flow and guarantee efficient power
transmission. This is done by adjusting the timing of differ-
ent power switch sets, represented as Sy to Sg in Figure 1.
Table 1 details the distinct phase shift modulation strate-
gies associated with the DAB converter, highlighting their
respective degrees of freedom (DoF) and modifiable param-
eters (Hou and Li 2019). It is worth noting that the adjustable
parameter for < S7, S5 > indicates the phase difference be-
tween S7 and Ss.

For designing the parameters of the modulation strategy,
users are required to define three essential pieces of specifi-
cation consistent with the application prerequisites, namely:

1. Expected operating conditions for the converter: This in-
volves specifying the rated power, rated input voltage
(current) and rated output voltage (current), as well as
their actual operating values.

2. Selected modulation strategy: The modulation strategy
selection should factor in both the acceptable level of
control complexity and the feasibility of achieving the
desired performance for the specific strategy.

3. Performance objectives: Various application scenarios
have different priorities for performance objectives,
which directly affect the modulation design. Common
objectives in practical applications encompass power ef-
ficiency, power density, zero voltage switching, zero cur-
rent switching, current stress, dynamic response, electro-
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Figure 2: System architecture of PHIA: an engineer provides design requirements to PHIA via a chat interface connecting to
its planner. Once the full requirements are determined, the planner coordinates and invokes tools from the tool set to iteratively
generate the modulation design without human supervision. After the design is done, the planner displays the final results and

explainable process on the chat interface.

Phase shift
Strategies No.of DoF  <.51,83 > <.51,8 > <5557 >
Single phase
shift ! 0 D, 0
Double phase
shift 2 D; D, D;
Extended phase
shift 1 2 D; D, 0
Extended phase
shift 2 2 0 D, D
Triple phase
shift 3 Dy D, Dy
Hybrid 2 D; D, 0
phase 2 0 D, D;
shift 2 D: D D

)

i

Table 1: Phase shift modulation strategies with the number
of degrees of freedom (DoF) from 1 to 3. < S5, S, > de-
fines the phase shift between S, and .S,,.

magnetic interference, stability, and compatibility with
other subsystems, etc.

Problem Statements

Given a set of operating conditions of the power converter
(rated power P, actual power F,, rated input voltage V..,
rated output voltage V5,., actual operating output voltage
V54), chosen modulation strategy S and prioritized perfor-
mance objectives O, the aim is to design modulation param-
eters for the chosen modulation strategy S to achieve opti-
mal performance for O. This design system is expected to
have the following features:

* Automatic design outcome generation, eliminating the
need for users to perform complex analysis or compu-
tations.

* Precise design outcomes that translate into exceptional
operational performance in real-world scenarios.

* Good usability and explainability to accelerate engineer-
ing design and scientific discovery.

» Simple setup for the design system, minimizing the de-
mand for extensive data resources.

Related Work
LLM-based Autonomous Agents

The evolution of LLMs has unlocked immense potential
for automating various processes in engineering and nat-
ural sciences through simple, plain-language queries. Nu-
merous studies have explored LLM capability in reasoning
and formal system applications, such as programming co-
pilots (Ross et al. 2023; McNutt et al. 2023), multi-lingual
tasks (Xu et al. 2024; Liu et al. 2024b), and mathematical
problem-solving (Shakarian et al. 2023; Shi et al. 2024).

To address more complex industrial tasks, recent work
proposed the use of LLM-based autonomous agents (LLM-
agents), which extends the capability of LLMs (Wang et al.
2024). LLMs are deployed as the planning backbone to un-
derstand user request and invoke suitable tools to perform
actions (Yao et al. 2024). Besides the planning module,
LLM-agents also include other components, such as mem-
ory and tools. With advanced techniques such as Retrieval
Augmented Generation (RAG) (Liu et al. 2024b; Xu et al.
2024), LLM-agents become powerful tools for solving com-
plex tasks with little to no human instruction.
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Figure 3: The proposed surrogate model consists of two physics-informed neural networks, namely, ModNet for switch-level
modeling to learn the switching behaviors, and CirNet for system-level modeling to learn the circuit physics. The hierarchical
structure enhances the overall accuracy of the power converter’s modeling of the complex behaviors of the switches.

Recent works reported outstanding performance of LLM-
agents in industrial applications. For instance, Cao and Lee
harnessed LLMs and Phase-Step prompts for cross-domain
robot task generation (Cao and Lee 2023). Li et al. intro-
duced an agentic framework to for strategic and interac-
tive decision-making (Li et al. 2024a). LLM-based agents
are found effective in other domain-specific tasks, such as
spatial-temporal strategic planning (Li et al. 2024b; Liu
et al. 2024a; Xiang et al. 2024), e-commerce customer sup-
ports (Liu et al. 2024b, 2026, 2025) and financial trad-
ing (Zhang et al. 2024b; Koa et al. 2024; Zhang et al. 2024a;
Gao, Wang, and Yang 2023).

Physics-Informed Neural Networks

Conventional neural networks are commonly data-hungry
and not explainable. By integrating physics principles into
neural networks (Raissi 2018), studies on Physics-Informed
Neural Networks (PINNs) show promising results in over-
coming such challenges.

PINN encompasses various approaches to incorporate
physics-informed (PI) components into the deep learning
pipeline, such as loss functions, parameter initializations and
the neural network architectures (Huang and Wang 2022).
As a result, the neural networks are able to learn latent fea-
tures that are governed by physical laws.

Recent studies also enhance PINN’s convergence, stabil-
ity, and accuracy, yielding improvements (Kang et al. 2023;
Yang, Qiu, and Fu 2023; Wandel et al. 2022). PINN has
found success in a wide range of applications. Some ex-
amples include predicting traffic conditions and modeling
traffic flow (Shi, Mo, and Di 2021; Ji et al. 2022), deter-
mining circuit parameters for power converter health mon-

itoring (Zhao et al. 2022), computing power flow in elec-
trical systems (Hu et al. 2020), modeling temperature dy-
namics in lakes (Jia et al. 2021), managing real-time reser-
voir gas production (Mudunuru et al. 2020), designing quan-
tum circuits (Liu et al. 2021; Guo et al. 2019), and sim-
ulating turbulent flows in urban environments (Xiao et al.
2019). These applications highlight PINNs’ promising per-
formance across many domains by infusing physics knowl-
edge into deep learning.

Methodology
Agentic Al System

Figure 2 presents the architecture of the proposed PHIA
agentic Al system. The front-end consists of a chat in-
terface and API interaction with GPT-4 as reasoning en-
gine, whereas the back-end consists of the agent’s tooling,
i.e., an optimization algorithm and the PINN-based surro-
gate model. In terms of workflow, PHIA first collects de-
sign specifications from the user and passes to an LLM-
based reasoning engine (GPT-4) for planning. Subsequently,
the agent invokes the back-end tooling, where the surrogate
model produces the performance metrics and passes to the
optimization algorithm searches for the optimal modulation
parameters. The back-end will respond with a set of optimal
design parameters to the front-end to display and visualise
as charts for explainability and readability.

Physics-Informed Power Electronics Modeling

Power electronics systems are highly nonlinear induced by
the complex switching behaviors of semiconductor devices
and the coupling of energy storage components. The generic



representation of a power electronics system formulated by
the nonlinear time-variant state-space equations is given in
Eq. 1, where @ are the circuit parameters, u(¢) and x(t) are
the state variables and the input variables, g(-) are general
nonlinear functions governing state transition behaviors, and
h(-) denotes the input physical laws.

Overall, the proposed surrogate model consists of two hi-
erarchical PINNs, one ModNet for switch-level modeling to
learn the switching behaviors and another one CirNet for
the system-level modeling to learn the circuit physics. Mod-
Net is trained to learn the intermediate waveforms v, and
v, and CirNet infers key characteristic waveforms in the cir-
cuit including i1, v¢1, ve2, With which the operating perfor-
mance such as the current stress, soft switching range, and
efficiency can be evaluated. As shown in Figure 1, v, and v,
denote the ac terminal voltages of the primary and secondary
full bridges, respectively, and ¢1,, v.1, and v.o represent the
inductor current, input capacitor voltage, and output capaci-
tor voltage, respectively.

515&” — g(2(t); 0)ult) + h(a(t); 0) M

ModNet for Switch-level Modeling of Switching Be-
haviors: In the modeling of semiconductor switches, the
non-ideal equivalent circuit considers the parasitic induc-
tances, capacitances, and resistances. The complicated inter-
actions within circuit components result in nontrivial oscil-
lations and overshoots, which will affect the overall operat-
ing performance of the power converter. To address this, the
switching behaviors is proposed to be modeled by a physics-
informed network, ModNet. ModNet is composed of several
layers of gated recurrent units with layer normalization (LN-
GRU). The temporal feature of LN-GRU accords well with
the task of modulation waveform prediction. As shown in
Figure 3 Part (1) and Eq. 2, ModNet infers vy, (¢x) and vy (x)
based on the information of the previous timestamp tj_1
and the hidden states, and all the intermediate predictions
within a switching cycle are stored for training. The training
of ModNet utilizes two kinds of losses: (1) the loss based
on physics information which helps with switching synchro-
nization; (2) the loss based on experimental data captured by
oscilloscope, which helps the model to capture oscillations
and overshoots in practical operations.

(Op(tr), Ds(tr)) = ModNet (0 (tx—1), Ds(tk=1); Omod)
@)
where 0,,(t) and ¥,(t;) denote the ModNet predictions
for v, and v, at time ¢, given the previous voltages 0y, (t5—1)
and U5 (tr—1).

dir(t)

ot

where L, Ry, and n denote features of magnetic com-
ponents: leakage inductance, equivalent inductor resistance,
and turn ratio of transformer, respectively. iy, (¢) is the key
waveform characterizing main circuit performances such as
power transfer, efficiency, thermal behavior, soft switching,
electromagnetic interference, etc.
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where C and C5 represent input and output capacitors, and
Spri(t) and sge(t) are functions describing circuit switch-
ing behaviors. vo; and veg govern the stability, robustness,
and power quality when interfacing other power conversion
circuits.

CirNet for System-level Modeling of Circuit Physics:
Subsequently, the system-level modeling is attained with the
physics-informed circuit net, CirNet. CirNet retrofits a re-
current LN-GRU net to encode circuit physical laws in its
inherent feature space. Taking non-resonant DAB converter
as an example, main state waveforms are iy, vo1 and vee.
By leveraging the Kirchhoff’s, Faraday’s, and Gauss’s laws,
the system-level dynamic equations are derived in Egs. 3 to
5, where the electrical notations are given in Figure 1. Eq. 3
describes the dynamics of high-frequency ac current iy, (t),
and Eq. 4 and Eq. 5 present the electrical behaviors of input
and output capacitors, which follow second-order differen-
tial equations.

To predict the key state waveforms, CirNet takes the out-
puts of ModNet as its inputs and iteratively infers the next
state based on the predictions of previous states, as the struc-
ture in Figure 3 Part (3) and Eq. 7 shown.

In terms of the training for CirNet, similar to ModNet, the
loss based on physics information [, and the loss based on
experimental data [; are both deployed, as shown in Eq. 7,
in which Ay and A, are their loss factors. In [, the circuit
physical dynamics expressed in differential equations 3 to 5
are embedded in the loss functions for physics learning.

In 4, several data points of the inductor currents 7, in the

hardware experiments are taken as the ground truth, where
N

i
The waveform predictions are saved for a switching period
for the performance evaluation.

the datapoints are denoted as {ij ; (t1),...,i} ; (tr)}
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Figure 4: PHIA with different structures of CirNet. The min-
imal MAE of 0.235 on validation set is reached when there
are 2 hidden layers with 32 hidden neurons.

Circuit Performance Evaluation Based on CirNet:
With the output of the two hierarchical PINNs, ModNet and
CirNet, the power converter performance can be evaluated.
With the key waveform inference results from the previous
CirNet, a variety of electrical performance metrics can be
measured, aiming to provide critical and comprehensive as-
sessments for power electronics systems. As shown in Fig-
ure 3 Part (3), the difference of the maximum and minimum
values of iy (t) gives the peak-to-peak current stress. The
numerical integration of [s;(¢)iz(t)]? provides the conduc-
tion loss evaluation for semiconductor switches. Soft switch-
ing performance, which is especially important for high-
frequency scenarios like the electric vehicle charging, is ana-
lyzed by imposing constraints on 4, (t) at the device commu-
tation moment, where s,,;(t) and s..(t) are needed for syn-
chronization. Other electrical performances can be gauged
with the domain expertise in power electronics.

As described in Figure 2, in the core engine, optimiza-
tion algorithms are deployed to cooperate with ModNet and
CirNet to find the optimal modulation parameters. The opti-
mization procedure is an iterative cycle, in which the op-
timization algorithm passes the operating conditions and
modulation parameters to the physics-informed surrogate
models ModNet and CirNet, and these models provide eval-
uated performance metrics to steer the optimization process.

By incorporating physics information within the neural
networks, the model’s interpretability is heightened, concur-
rently leading to a reduction in the necessary training data
points. Furthermore, the entire design automation system ex-
hibits seamless scalability through the integration of surro-
gate models for additional functions into the core engine.
Importantly, users can access these functionalities without
any alterations to their experience.

Experiments
Experiments Setup

We primarily aim to ascertain the accuracy of the ModNet
and CirNet surrogate models, where heightened model accu-
racy in the core engine translates to superior system design
performance. Therefore, we carried out several experiments

Model #Parameters Selected Hyperparameters
LSTM 21,671 3 layers, 32 hidden size
GRU 13,319 1 layer, 64 hidden size
LN-GRU 13,319 1 layer, 64 hidden size
2 layers, 7 kernel size,
TCN 88,199 64 hidden size
GRU-VAE 88,583 2 layers, 64 hidden size
1 layer, 2 attention heads,
TST 6,913 32 hidden size
. 1 layer, 2 attention heads,
TSiTPlus 7.042 32 hidden size
MiniRocket - 700 features, 6 dilatation size
CirNet 9,930 2 layers, 32 hidden size
PHIA 19,857 2 layers, 32 hidden size

Table 2: Hyperparameter selection of PHIA and bench-
marks. The chosen hyperparameters yield the lowest loss on
validation set.

to validate PHIA’s model performance in a low-resource set-
ting, i.e., using a tiny dataset with only 200 samples.

Data Preparation: In this work, we focus on a modeling
task of time-series forecasting for the inductor current i, (t)
of DAB converters under triple phase-shift (TPS) modula-
tion as a representative example. Using a hardware experi-
mental prototype, we acquired waveform data spanning 200
sequences. The configuration of the hardware prototype and
the methodology employed for data acquisition are eluci-
dated in reference (Lin et al. 2023b).

One of the advantages of PINN models is that it requires
very few samples to learn as compared to other machine
learning models. To demonstrate this advantage, we conduct
our experiments with two different data splitting ratios. For
the first set, we split the data into 5% training (10 samples),
10% validation (20 samples) and 85% test (170 samples).
The second set is split into 50%, 10% and 40% for training,
validation and test, respectively.

Baseline: We evaluate PHIA’s design outcomes using: (1)
the Bayesian Network (BN) (Pearl 1985), (2) Support Vec-
tor Regression (SVR) (Smola and Scholkopf 2004), (3) XG-
Boost (Chen et al. 2015), (4) Random Forest (RF) (Breiman
2001), (5) Long-Short-Term-Memory (LSTM) (Hochreiter
and Schmidhuber 1997), (6) GRU net (Chung et al. 2014),
(7) LN-GRU net (Ba, Kiros, and Hinton 2016), (8) Tempo-
ral Convolutional Net (TCN) (Lea et al. 2017), (9) GRU-
Based Variational Autoencoder (GRU-VAE) (An and Cho
2015), (10) Time-Series Transformer (TST) (Zerveas et al.
2021), (11) Time-Series Net Adapted from Vision Trans-
former (TSiT-Plus) (Oguiza 2022), and (12) MiniRocket
(Tan et al. 2022).

Hyperparameter Search: For fair comparison, we con-
duct hyperparameter search on the validation set for PHIA
and all baseline algorithms. We perform grid search on im-
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Figure 5: Modeling performance of the top 5 benchmarks
and the proposed PHIA. The modelling results of PHIA is
closest to the measurement, demonstrating its outstanding
modeling accuracy.

portant hyperparameters for each model. Figure 4 illustrates
the MAEs of PHIA with different hyperparameters, shed-
ding light on the selected best structure. The final selected
sets of hyperparameters are summarized in Table 2.

Experimental Results

Table 3 and 4 summarise the experimental results for PHIA
and baseline for two different splits. Each algorithm with the
respective optimal hyperparameters was ran for ten times.
The average MAE for training, validation and test sets are
reported. The reported P-values are the results of T-tests at a
significance level of 0.02.

For both splits, experimental results show that PHIA out-
performs conventional machine learning approaches, such
as BN, SVR, XGBoost and RF, and exhibits superior perfor-
mance over deep learning predictive models, such as LSTM,
GRU, LN-GRU and TCN, and predictive models such as
GRU-VAE. When compared to state-of-the-art models like
TST, TSiTPlus, and MiniRocket, PHIA again demonstrates
notably enhanced forecasting accuracy. To further affirm
the hierarchical PINNSs structure, we contrasted CirNet with
PHIA. Noticeably, PHIA with 10 training samples outper-
forms most benchmarks with 100 training samples, and align
with CirNet-Only model.

To visualize the modeling performance, Figure 5 presents
the modeled 7;, waveform for both PHIA and benchmark
models. Notably, the PHIA modeling outcomes align more
congruently with the measurements than any of the other
models, demonstrating its outstanding modeling precision.

Overall, we conclude that the proposed PHIA statistically
achieves better modeling results than other baseline models
for power electronics modeling, even with extremely low-
data scenario.

Model Training Validation Test p-value
BN 2.152+0.0 2.436+0.0 2.515£0.0  6.81E-11*
SVR 1.984+0.0 2.313£0.0 2.286+0.0  1.16E-10*

XGBoost 2.299+0.0 2.108+0.0 2.792+0.0  3.83E-11*
RF 4.98340.0 4.181+0.0 4.43440.0  3.18E-12*

LSTM 1.16440.151  1.380+£0.042  1.560+£0.095  7.23E-8*

GRU 1.287£0.174  1.336+0.101 1.604+£0.064 6.35E-10*
LN-GRU 0.834+0.272  1.289+0.165 1.257£0.117  1.71E-6*

TCN 1.571+0.210  1.996+0.257 1.538+£0.501 1.436E-3*

TST 0.668+0.062 0.750+£0.028 0.666+0.063  1.47E-6*
TSiTPlus 0.707£0.158  1.1064+0.12  1.302£0.078  3.46E-8*

MiniRocket ~ 0.113£0.122  0.742+0.365 0.763+0.338  0.0131*

GRU-VAE  1.9284+0.201 2.190+0.180 2.219+0.172  6.47E-7*

CirNet Only 0.1214+0.014 0.282+0.014 0.310+0.013  1.442E-3*
PHIA 0.140+0.054  0.235+0.025  0.245+0.029 N/A

Table 3: Experimental results with training / validation /
test set split of 5% (10 samples), 10% (20 samples) and
85% (170 samples), respectively. PHIA statistically outper-
forms baselines (marked with *), with a 63.2% lower error
as compared to the second-best benchmark (TST), measured
in Mean Absolute Errors (MAE).

Interpretation

Accuracy and Reliability The improved accuracy ob-
served in the experiments, particularly in low-data scenarios,
underscores the robustness of the proposed framework. This
enhancement ensures reliable performance, which is crucial
for reducing the risk of failures in real-world applications.
The system’s ability to achieve high precision despite lim-
ited data sets demonstrates its adaptability and suitability for
resource-constrained environments.

Efficiency Gains The significant reduction in error rates
translates directly to efficiency gains. By optimizing work-
flows, the framework enables engineers to achieve desired
outcomes with fewer iterations and reduced computational
resources. This efficiency not only accelerates the design
process but also minimizes the operational costs associated
with traditional methods.

Scalability Performance improvements across metrics in-
dicate better scalability of the framework. This scalabil-
ity allows the system to handle more complex systems or
broader application domains without requiring proportional
increases in computational or human resources. Such scal-
ability is essential for extending the applicability of the
framework to diverse use cases.

Explainability and Transparency The integration of hi-
erarchical modeling enhances the explainability of the re-
sults. By aligning the model predictions with physical prin-
ciples, the framework produces outputs that are both inter-
pretable and trustworthy. This transparency is crucial for
fostering confidence in the system’s decisions, especially in
critical domains like power electronics.



Model Training Validation Test p-value
BN 2.455+0.0 2.206+0.0 2.348+£0.0  5.03E-14*
SVR 2.049+0.0 1.780+0.0 1.991+£0.0  1.25E-13*
XGBoost 1.321+£0.0 2.194+0.0 1.986+£0.0  1.27E-13*
RF 3.167£0.0 3.937+0.0 3.622+£0.0  4.89E-15*
LSTM 1.246+0.165 1.129+£0.078 1.193+0.098  1.89E-6*
GRU 1.196+0.127  1.356+0.134  1.270+0.114  2.80E-6*
LN-GRU 0.534+0.097 0.480£0.075 0.527+0.086  2.33E-4*
TCN 0.685+0.018 0.744+0.062 0.726+0.061  3.79E-6*
TST 0.264+0.033  0.240£0.033  0.264+0.031  3.93E-3*
TSiTPlus 0.585+0.099 0.567£0.082 0.569+0.099  2.61E-4*

MiniRocket  0.5224+0.305 0.616£0.346 0.6461+0.343  0.0246*

GRU-VAE  0.686+0.074 0.663+0.036 0.721+0.056  2.42E-6*

CirNet Only  0.1624+0.032  0.239+0.014  0.234+0.007  3.98E-3*
PHIA 0.170+0.013  0.191£0.005  0.201£0.006 N/A

Table 4: Experimental results with training / validation /
test set split of 50% (100 samples), 10% (20 samples) and
40% (80 samples), respectively. PHIA statistically outper-
forms baselines (marked with *), with a 23.7% lower error
as compared to the second-best benchmark (TST), measured
in Mean Absolute Errors (MAE).

Implications for Decision-Making The precision and
reliability of the framework support informed decision-
making in key applications. For example, in renewable en-
ergy systems and power grid operations, the metrics directly
influence operational success and system stability. The en-
hanced performance ensures that the framework can be ef-
fectively deployed in high-stakes scenarios.

This interpretation highlights the broad implications of
the observed performance improvements, showcasing the
framework’s potential to revolutionize practical applications
and advance theoretical understanding in the domain.

User Study

To assess PHIA’s empirical performance in improving en-
gineering efficiency, we design a practical use case for the
modulation strategy of the DAB converter and conduct an
empirical experiment with 20 industrial practitioners.

Specifically, the user requirements for this design process
include: (1) Guidance in defining design specifications; (2)
Optimal design outcomes for the tailored scenario; and (3)
Analysis on the design outcomes.

Based on the use case, we conduct a user study with 20
industrial practitioners recruited via research labs and col-
laborating external companies on a voluntary basis. The par-
ticipants consist of 10 junior engineers with less than three
years of experience, and 10 senior engineers with over five
years of relevant experience. All participants declared to
have no prior experience in using Al systems to assist en-
gineering design works.

All participants are given two independent variants of the
same task, namely to design the TPS modulation strategy

for a Dual Active Bridge (DAB) converter to serve as a DC
transformer of the DC-DC power grid, as shown in Fig. 1.
We ask the participant to first use PHIA’s chat interface to
address task variant one. After completion, they then use
standard practice (i.e. analytical and manual design) based
on the given design requirements and data to address task
variant two. To assess the effectiveness, the effective work-
ing hours are measured in 30-minute time blocks while tack-
ling the tasks.

The results of the user study are highly promising, in
terms of both functionality and efficiency. In terms of func-
tionality, all 20 participants are able to complete both as-
signed tasks successfully. In terms of efficiency, the 10 ju-
nior engineers spent an average of 1.2 time blocks and 115.5
time blocks in completing the tasks using PHIA and analyt-
ical approach, respectively; where the 10 senior engineers
recorded an average of 0.9 time blocks and 30.5 time blocks
with PHIA and analytical approach, respectively. Overall,
we observe that Junior engineers and senior engineers expe-
rienced 96.3 times and 33.9 times efficiency, respectively.

Conclusion

Modulation strategy design of power converters is pivotal for
the optimal functioning of renewable energy power systems.
However, numerous Al-centric modulation design automa-
tion systems today grapple with challenges tied to explain-
ability, usability, scalability, and data intensity. We intro-
duced PHIA, a LLM-based Physics-informed autonomous
agent to perform effective power converter modulation de-
sign automation. Our physics-informed approach combines
the reasoning capabilities of large language models with rig-
orous physical constraints, enabling robust and interpretable
design solutions. Experiments demonstrate PHIA’s profi-
ciency in accurate power converter modeling, even with
a data-constrained environment. The hierarchical physics-
informed neural network architecture ensures both accuracy
and interpretability, while the LLM-based planning module
provides an intuitive interface for engineers. Our user study
also shows that using PHIA helps engineers improve effi-
ciency by over 33 times in practice, highlighting its potential
for widespread adoption in industrial applications. Future
work could explore extending PHIA to other power electron-
ics applications and incorporating additional physics-based
constraints to further enhance its capabilities.
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