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Abstract

Accurate multi-turn intent classification is critical for ad-
vancing conversational AI systems but remains challenging
due to limited datasets and complex contextual dependen-
cies across dialogue turns. This paper presents two novel
approaches leveraging Large Language Models (LLMs) to
enhance scalability and reduce latency in production dia-
logue systems. First, we introduce Symbol Tuning, which
simplifies intent labels to reduce task complexity and im-
prove performance in multi-turn dialogues. Second, we pro-
pose Consistency-aware, Linguistics Adaptive Retrieval Aug-
mentation (CLARA), a framework that employs LLMs for
data augmentation and pseudo-labeling to generate synthetic
multi-turn dialogues. These enriched datasets are used to fine-
tune a small, efficient model suitable for deployment. Exper-
iments on multilingual dialogue datasets show that our meth-
ods result in notable gains in both accuracy and resource ef-
ficiency, with improvements of 5.09% in classification accu-
racy, a 40% reduction in annotation costs, and effective de-
ployment in low-resource multilingual industrial settings.

Introduction
Dialogue systems are critical for automating interactions be-
tween customers and agents, enabling efficient communica-
tion and improved user experience. They play a pivotal role
in global e-commerce platforms by meeting the growing de-
mand for instantaneous customer service. Intent classifica-
tion, a core component of natural language understanding,
identifies users’ goals from their inputs, thereby reducing
waiting times and operational costs (Weld et al. 2021). User
interactions often involve multi-turn dialogues, particularly
for complex requests, which complicates the development
of multi-turn intent classification (MTIC) models despite
their similarity to standard text classification tasks. More-
over, real-world multilingual systems require scalable and
inclusive solutions, especially in low-resource settings. This
complexity arises from the need to model contextual fac-
tors such as historical utterances and prior intents; without
proper session-level understanding, systems risk misinter-
preting user intentions and producing incorrect or irrelevant
responses (Xu and Sarikaya 2014). Consequently, MTIC re-
mains a challenging problem in real-world and industrial di-
alogue systems.
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Figure 1: Comparison of instruction tuning and symbol tun-
ing. Simplifying verbose intent labels (e.g., “Request to
Cancel Order” → “Cancel Order”) reduces redundancy, en-
hancing LLM classification performance by 5.09%, address-
ing key challenges in production intent classification.

There are two main challenges in multi-turn intent classi-
fication. First, intents in industrial dialogue systems are typ-
ically longer than those used in general text classification
tasks. Figure 1 shows that real-world intents often comprise
multiple words in the knowledge base, as operators (Ops) as-
sign clear and descriptive intent names for knowledge man-
agement, resulting in redundancy. While recent advances in
large language models (LLMs) offer opportunities to sim-
plify and optimize text classification (Wang, Pang, and Lin
2024), and prior work shows that LLMs perform well in sen-
timent analysis (Přibáň et al. 2024) with short labels (e.g.,
positive, negative), LLMs still struggle with context de-
pendency in multi-turn conversations and long intent labels
common in industrial systems. Second, collecting multi-turn
datasets remains challenging. Although several studies on
MTIC exist (Qu et al. 2019; Wu, Su, and Juang 2021), they
typically assume access to comprehensive multi-turn train-
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Figure 2: Annotation pipeline of multi-turn intent classification datasets, and two major challenges: (1) managing a large number
of intents (500+) across markets with redundant labels, and (2) the high cost of collecting multi-turn training data.

ing data, which is rarely available in real-world applications.
Figure 2 shows the annotation pipeline for MTIC tasks.

Even when redundant information within intent labels is ig-
nored, dialogue systems typically maintain hundreds of in-
tents operated by local Ops in the knowledge base to cover
users’ diverse and specific intents across markets, which
substantially increases the complexity of multi-turn clas-
sification and annotation. This complexity is significantly
greater than that of dialogue act classification, which typi-
cally involves fewer than 10 classes in dialogue state track-
ing (DST) (Qin et al. 2020). As a result, the annotation
process becomes costly and time-consuming, making large-
scale manual annotation of multi-turn datasets impractical.
Moreover, insufficient training data can significantly hinder
model performance, even when using LLMs. Together, these
challenges highlight the need for more efficient methods to
address data scarcity and classification complexity.

To address these challenges, we first examine the feasibil-
ity of using LLMs for supervised fine-tuning (SFT) to per-
form MTIC via a generative approach. The large number
of diverse intents increases task complexity, as generating
longer token sequences degrades LLM performance (Rust
et al. 2021). To mitigate this issue, we compress redundant
information in intent labels into concise forms using GPT-
4 and adopt these compressed labels for SFT, a process we
term symbol tuning, which reduces the difficulty of multi-
turn intent classification for generative LLMs.

Secondly, to address the shortage of multi-turn data, we
propose a novel pseudo-labeling and data generation frame-
work termed Consistency-aware Linguistics Adaptive Re-
trieval Augmentation (CLARA). Extending beyond exist-
ing synthetic data generation approaches (Liu et al. 2024),
CLARA serves as an effective pseudo-labeling method for
generating multi-turn data from users’ unlabeled utterances
via self-consistency. Specifically, CLARA orders retrieved
examples in multiple ways to construct adaptive prompts,
capturing diverse reasoning paths and filtering noise dur-
ing in-context learning to improve label quality. The result-
ing data are then used to train a compact model for effi-
cient online inference. Designed for multi-turn intent clas-
sification, CLARA addresses limitations of prior methods
by leveraging adaptive retrieval and self-consistency to im-
prove pseudo-labeling accuracy, and directly optimizes for
zero-shot multi-turn classification and scalable deployment.

In summary, the contributions of this paper are as follows:

1. We introduce symbol-tuning, leveraging compressed in-
tents to enhance LLM performance for MTIC, demon-
strating a 5.09% improvement in SFT results.

2. We propose CLARA, a novel framework for multi-turn
data generation that effectively improves MTIC results.

3. We show that fine-tuning smaller models on CLARA-
generated data enables scalable and accurate deployment
of MTIC systems in low-resource industrial settings.

Problem Formulation
Multi-Turn Intent Classification (MTIC) involves iden-
tifying the intent I of the final query qn from a prede-
fined set I, based on a sequence of user queries Q =
{qi}ni=1 in a chatbot session. This task relies on the
conversational context C = {qi}n−1

i=1 , which includes
prior queries. Context-dependency adds complexity, requir-
ing models to interpret nuanced conversational dynamics
and evolving user intentions. Each intent I has a local-
language title y and a hierarchical English category z
(e.g., Indonesia: y = ’Cara membatalkan pesanan’, z =
’Logistics > Order > Cancellation’).
Supervised Fine-tuning (SFT) adapts pre-trained LLMs
for specific tasks using labeled datasets. This process
achieves high benchmark accuracy through task-specific su-
pervision.

Problem Definition Given a dataset D = {(xi, yi)}Ni=1,
where xi is an input query and yi is the corresponding label,
the objective is to optimize model parameters θ to maximize
the conditional likelihood p(yi|xi; θ):

LSFT(θ) = − 1

N

N∑
i=1

log p(yi|xi; θ).

Conditional Probability Modeling For structured out-
puts, yi is a sequence of tokens {t1, t2, . . . , tm}, with prob-
ability factorized autoregressively:

p(y|x; θ) =
m∏
j=1

p(tj |t<j , x; θ).

The training objective becomes:

LSFT(θ) = − 1

N

N∑
i=1

m∑
j=1

log p(tj |t<j , xi; θ).



Symbol Tuning, instead of replacing task labels with unre-
lated symbols (Wei et al. 2023b), focuses on intent classifi-
cation. Verbose labels in industrial systems disperse seman-
tic information, hindering model performance. To address
this, we compress labels into concise phrases using GPT-4.
For example, ”Request to Cancel Order” becomes ”Cancel
Order,” serving as compact semantic anchors that enhance
shallow and deep layer representations.

Let the original intent label be L = {t1, t2, . . . , tm}. The
compressed label L′, with n ≪ m, is generated by optimiz-
ing:

L′ = argminL′ C(L′) + E(L′, L),

where: - C(L′): Compactness of L′ (e.g., token count). -
E(L′, L): Semantic divergence, computed as:

E(L′, L) = 1− cosine sim(ϕ(L′), ϕ(L)),

with ϕ(·) as an embedding function.

Objective Function Given D = {(xi, Li)}Ni=1, where Li

is the original label, the supervised fine-tuning loss becomes:

LST(θ) = −E(x,L′)∼D

n∑
j=1

log p(tj |t<j , x; θ),

where t<j denotes preceding tokens in L′.

Solutions
Symbol Tuning on LLM
Our Symbol Tuning (ST) method involves supervised
fine-tuning (SFT) of an LLM with compressed in-
tent labels. Given a complete chat session S =
{q1, I1, ..., qn−1, In−1, qn}, the model is trained to generate
the representative question rn corresponding to the correct
intent In of the final query qn. Queries and intents are struc-
tured in a natural question-answering flow, as shown below:

SYSTEM: ”A chat between a curious user and an ar-
tificial intelligence assistant. The assistant provides
helpful, detailed, and polite responses to the user’s
questions. ...
USER: ”{q˙1}”
ASSISTANT: ”The intent title is {r˙1}.”
...
USER: ”{q˙n}”
ASSISTANT: ”The intent title is {r˙n}.”

The generated rn is compared with intents in I using co-
sine similarity in embedding space to ensure semantic align-
ment between the model output and predefined intent titles.

Compressed Generation Intent representative queries r
often comprise approximately 12 tokens, making them inef-
ficient generation targets. To address this, we use an LLM
to compress r into concise phrases, typically two words,
while preserving semantic meaning. This process ensures
each compressed intent label rc is unique. The compression
reduces the average length of rc to four tokens, optimizing it
for generation tasks and improving classification accuracy.

Cross-Lingual Labels In non-English markets, intent la-
bels r are compressed into English while retaining the orig-
inal language for input queries Q. Leveraging English, the
main language in LLM pretraining corpora, simplifies label
generation and enhances model performance in multilingual
settings. This cross-lingual strategy reduces complexity and
improves alignment with pretraining distributions.

Consistency-aware Linguistics Adaptive Retrieval
Augmentation (CLARA)
To enhance in-context learning, we propose the
Consistency-aware Linguistics Adaptive Retrieval Aug-
mentation (CLARA) framework. CLARA incorporates a
fine-tuned single-turn model Mc in a retrieval-augmented
pipeline. This framework enables zero-shot Multi-Turn
Intent Classification (MTIC) using only single-turn demon-
strations, and operates offline as a pseudo-labeling tool.

Since the pipeline operates offline, response time is not
a critical consideration. Self-consistency checking was per-
formed on the LLM outputs to ensure the quality of pseudo-
labels. As shown in Figure 3, the in-context learning phase
is run three times per sample, with the in-context demon-
strations sorted in three orders according to their similar-
ity scores to the session queries: ascending, descending, and
random. This self-consistency checking approach can also
be implemented when using a black-box LLM. Online chat
logs are sampled for pseudo-labeling, and only those having
consistent labels for all 3 runs will be kept for training.

Hierarchical Text Classification (HTC) Mc is an en-
semble of label-attention encoder and a hierarchical-aware
tree-based encoder with 3-layered global and local intent
classifiers.

The label-attention encoder has one classifier head for
each intent layer. Each classifier head has one hidden lin-
ear layer to obtain the layer intermediate output Ll, which
encodes the layer information. This layer information will
be utilised in the input of the next layer classifier head.

Ll =

{
HW 1

l + b1l , if l = 1,

(H ⊕ Ll−1)W
1
l + b1l , if l > 1,

where W 1
l ∈ Rd×d for l = 1 and W 1

l ∈ R2d×d for l > 1.
b1l ∈ Rd, l is the layer number, ⊕ denotes tensor concatena-
tion. Finally, we obtain the local logits H l

local for each layer
classes by using another linear layer

H l
local = Ll ·W 2

l + b2l ,W
2
l ∈ Rd×|Il|, b2l ∈ R|Il|

where |Il| is the number of classes in the layer.
To inject awareness of the overall hierarchical structure,

we adopt a state-of-the-art HTC global approach introduced
in HiTIN (Zhu et al. 2023). Specifically, the original taxon-
omy structure is simplified and constructed a tree network.
The messages are propagated bottom-up in an isomorphism
manner, which complements the label-attention model used.
The embedding for leaf nodes are obtained by broadcasting
the text representation H . After propagation, all embedding
from all layers are aggregated to form single embedding and
passed to a classification layer to obtain the logits Hglobal



Figure 3: Illustration of CLARA: Merging LARA with Self-Consistency effectively combines query aggregation, knowl-
edge base retrieval, and self-consistency mechanism to generate high-quality pseudo-labels for multi-turn dialogues. The self-
consistency process improves labeling accuracy by validating intent predictions across different prompt orderings.

Market Lang. Intents Train(ST) Test(MT)

BR pt 316 66k 372
ID id 481 161k 1145

MY en,ms 473 74k 1417
PH en,fil 237 33k 189
SG en 360 76k 737
TH th 359 60k 502
TW zh-tw 373 31k 353
VN vi 389 178k 525

Table 1: Multilingual dataset statistics for Single Turn (ST)
and Multi-Turn (MT).

of all tree nodes. The logits are then split by the number of
classes in each layer to obtain H l

global.
The final class probabilities for each layer Pl is then ob-

tained by:

Pl = softmax(H l
local +H l

global)

Experiments
Dataset
The dataset used in our experiments is derived from the
conversation history of a large e-commerce platform. It in-

MKT Model rc CL-Label Accuracy

SG Naive Concat. - - 60.52%
SG Selective Concat. - - 56.99%
SG Llama2-7B ✘ ✘ 56.24%
SG Llama2-7B ✔ ✘ 61.33%
SG Domain-Llama2-7B ✔ ✘ 63.23%
ID Naive Concat. - - 60.61%
ID Selective Concat. - - 63.23%
ID Llama2-7B ✔ ✘ 49.96%
ID SeaLLM-7B-chat ✔ ✘ 52.49%
ID SeaLLM-7B-chat ✔ ✔ 55.02%

Table 2: Performance of LLM with symbol tuning.

cludes user queries in the local languages of eight markets:
Brazil (BR), Indonesia (ID), Malaysia (MY), Philippines
(PH), Singapore (SG), Thailand (TH), Taiwan (TW), and
Vietnam (VN), as detailed in Table 1. Labeled data were
manually annotated by local customer service teams, with
only samples achieving label consistency across three inde-
pendent taggers being selected to ensure quality.

Single-turn training data collected over years of business
operations form the basis for supervised fine-tuning and in-
context learning. For multi-turn evaluation, real online ses-
sions are annotated by local customer service teams, with



only the last query qn labeled in each session Q. For prepro-
cessing, we remove noisy annotations, standardize intents,
and augment multi-turn sessions using dialogue state transi-
tion probabilities derived from chat logs.
Symbol Tuning. We perform symbol tuning on LLMs for
the SG and ID datasets, where SG mainly uses English
while ID uses Bahasa Indonesia. The training data com-
prises a mix of existing single-turn samples and about 60k
semi-automatically crafted multi-turn samples added to each
market. Some are obtained by cleaning online chat logs to
identify more accurate intents using an LLM with few-shot
chain-of-thought prompts. The rest are constructed by com-
bining several dialogues sampled from the existing single-
turn training dataset to form one session. The transition of
intents in a session is calculated from the online chat logs.
HTC with CLARA. 70k of online chat logs are sam-
pled for pseudo-labelling. After self-consistency checking,
around 12% of the data yield inconsistent results and are dis-
carded from training. 1.5k samples are split from the pseudo-
labeled data to serve as the validation set for early stopping.

Metrics
The primary evaluation metric is the accuracy of predicted
labels for the final query qn in each conversation session Q.
Metrics accounting for class imbalance were not used, as
the sampled sessions reflect the distribution of online traf-
fic across intents, providing a realistic approximation of live
performance.

Implementation Details
Symbol Tuning on LLM FastChat framework is used to
fine-tune 7B LLMs using LoRA method on their q proj,
v proj, o proj, and k proj modules with a learning rate of
2e-5 over 10 epochs. The 7B models used are Llama-2-7B
(for SG) and SeaLLM-7B-chat (for ID) on Hugging Face.
Before the models are fine-tuned on the multi-turn intent
recognition task, they are further pre-trained on ShareGPT
dataset with the same setting above, and the weights are
then merged. For the sake of simplicity, we will refer to the
LLMs further pre-trained on ShareGPT dataset as base mod-
els. During training for intent classification task, loss is cal-
culated on all the model output including those after history
queries. During inference, greedy decoding strategy is used
to generate the target r part, the prefix ”The intent title is ” is
not generated but instead appended at the end of the prompt.
When the generated label has no exact match with any r in
I, gestalt string matching is used to find the closest one.

HTC with CLARA The in-house Hierarchical Text Clas-
sification (HTC) model is a BERT-based model fine-tuned
using the combination of the pseudo-labeled multi-turn data
and existing single-turn data, as shown in Section 4.1. We
use AdamW to finetune the HTC with a learning rate of 5e-
6. All tests are run on a single Nvidia V100 GPU card with
32GB of GPU memory.

Baseline settings
For a fair comparison, we adopt three methods fine-tuned on
HTC (Mc) as our global baselines across two methods:

1. Single-turn method: where only the last query of a ses-
sion is considered by Mc;

2. Naive concatenation: all queries are concatenated to-
gether before being fed into Mc;

3. Selective concatenation: where a concatenation selec-
tion model is trained to select the most suitable historical
query with the last query to serve as the input to Mc.

ST on LLM In SG, except Llama2-7B, we also tried to
continue pre-training the base models on in-domain corpus
to strengthen the language understanding of local languages
and the corresponding slang used, as humans usually con-
verse with the chatbot in a non-formal way. We term the do-
main specific base model as Domain-Llama2-7B. In ID, we
switched Llama2-7B model to SeaLLM-7B-chat (Nguyen
et al. 2024) which was introduced specifically for languages
in South East Asia.

The ST approach was adapted for supervised intent recog-
nition using compressed generation targets (rc) and cross-
lingual labels (CL label). These adjustments optimized per-
formance by simplifying the generative task while maintain-
ing semantic integrity. Comparisons with baseline methods
in Table 2 show that ST achieves competitive results in En-
glish markets but faces challenges in non-English ones due
to limitations in pre-training for low-resource languages.

HTC with CLARA This experiment uses Vicuna-13B
as our base model for pseudo-labeling within LARA and
CLARA. We designed three pipelines with four prompt
templates in (Liu et al. 2024) to demonstrate that using
CLARA for pseudo-labeling can effectively improve the
HTC model’s performance in multi-turn classification tasks.
The detailed introduction is listed as follows:
• LARA: Using LARA directly as a classifier.
• LARA-PL: Using LARA as a naive pseudo-labeling tool

and fine-tune HTC model with generated data.
• CLARA: Using CLARA to filter out the noise and gen-

erate high-quality data to fine-tune the HTC model.

Offline Experiments
Symbol Tuning on LLM Table 2 illustrates the effective-
ness of Symbol Tuning (ST) on LLMs. Compressing the
generation target r reduces task complexity and improves
accuracy by 5.09% in the SG market. This compression also
mitigates hallucination, reducing instances of unmatched
generated labels from 2.5% to 0%.

Interestingly, this technique also stopped LLM hallucina-
tion, i.e. generating label with no match in the I. The hal-
lucination rate without using compressed r is about 2.5%.
In ID, which is a non-English market, we find that cross-
lingual label which changes the generation target to English
rather than in the local language also improved the perfor-
mance by 2.53%. Using different base models which were
trained specifically on the in-domain corpus or for the local
language also proves to be useful. Domain-Llama2-7B im-
proves the performance by 1.90% in SG while SeaLLM-7B-
chat improves the performance by 2.53% in ID compared to
Llama2-7B. While the ST approach outperforms the base-
lines in English market, it still leaves a lot to be desired in



Pipeline Model Prompt SC BR ID MY PH SG TH TW VN avg

Fine-tuning Single-turn - - 30.98% 52.14% 56.81% 40.21% 51.13% 52.99% 58.07% 65.90% 53.76%
Fine-tuning Naive Concat. - - 50.81% 60.61% 57.02% 47.62% 60.52% 56.97% 65.44% 76.95% 60.08%
Fine-tuning Select. Concat. - - 52.69% 63.23% 60.20% 51.32% 56.99% 57.77% 64.02% 74.10% 60.97%
LARA Vicuna-13B P ✘ 52.69% 61.48% 65.42% 54.50% 65.26% 60.96% 67.14% 77.90% 64.18%
CLARA Vicuna-13B P ✔ 55.38% 63.58% 65.00% 54.50% 66.21% 63.75% 71.10% 79.24% 65.52%
LARA Vicuna-13B Psymbolic ✘ 51.88% 60.00% 64.57% 53.97% 65.26% 58.96% 65.44% 74.67% 62.92%
CLARA Vicuna-13B Psymbolic ✔ 54.57% 62.62% 65.56% 50.79% 66.76% 62.95% 69.97% 76.76% 64.94%
LARA Vicuna-13B Pprepend ✘ 54.03% 61.75% 64.50% 53.44% 65.94% 61.55% 66.86% 75.81% 63.97%
CLARA Vicuna-13B Pprepend ✔ 53.76% 63.84% 65.70% 52.91% 68.11% 63.15% 69.97% 78.48% 65.65%
LARA Vicuna-13B Pformat. ✘ 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%
LARA-PL Vicuna-13B Pformat. ✘ 55.91% 64.19% 64.43% 49.21% 66.49% 61.95% 69.41% 81.14% 65.29%
CLARA Vicuna-13B Pformat. ✔ 55.91% 65.33% 66.27% 51.85% 67.16% 63.35% 72.80% 78.86% 66.35%

Table 3: Performance of CLARA compared to baselines. CLARA with formatted prompts and Self Consistency (SC) achieves
the best average accuracy (66.35%) across all markets, validating our approach’s effectiveness in both English and non-English
markets. The average scores are weighted on the number of test samples in each market.

non-English market. This phenomenon may arise as a result
of the ST approach employed for non-dominant languages
during pre-training, which necessitates a greater quantity or
higher quality of data to achieve satisfactory performance in
a task that was not included in the pre-training phase. This is
particularly true when the model lacks knowledge pertaining
to domain intents.

Pseudo-labeling using CLARA As shown in Table 3,
CLARA improves pseudo-label quality through self-
consistency validation, resulting in a 1.06% performance
gain over LARA. This validation process identifies and re-
moves approximately 12% of inconsistent samples, ensuring
high-quality synthetic labels. While this approach requires
additional offline training resources, it significantly lowers
deployment costs by relying on a single, lightweight classi-
fication model.

This performance gain can likely be attributed to the
strengths of the discriminative method in classification tasks,
as training process also exposed the model to the compre-
hensive high quality single-turn dataset. Besides, the pre-
trained model used for Mc was also pre-trained specifically
on the in-domain multi-lingual corpus, making it a strong
suit for our multilingual e-commerce setting. CLARA’s
integration of self-consistency within the pseudo-labeling
pipeline significantly enhances the quality of synthetic la-
bels, resulting in a 1.06% improvement in performance, as
indicated in the last row of Table 3. When the LLM lacks
confidence in its ICL responses, minor changes in the in-
put prompt can significantly alter the output. This method
effectively identifies potential inaccuracies in ICL outputs
for black-box models where direct output scores are unavail-
able. While the offline training may require more time, the
resulting deployment is more efficient and scalable, requir-
ing only one compact classification model.

Online Deployment Evaluation
ST on LLM Using the LMDeploy framework, LARA
weights were merged with the 7B base model, enabling

faster inference times. Deployed on a single 32GB V100
GPU, the Symbol Tuning (ST) approach achieved an aver-
age latency of 170ms at 0.5 QPS in the SG market. In con-
trast, CLARA models converted to ONNX format (1.1GB
per model) achieved an average latency of 80ms at 1 QPS on
an 8-core CPU machine with 16GB memory, demonstrating
superior scalability and cost-efficiency.

CLARA We deploy CLARA across all eight markets. The
models were first converted to ONNX format, reducing
their size to 1.1GB. Deployed on an 8-core CPU machine
with 16GB memory, CLARA achieved an average latency
of 80ms at 1 QPS, which is less than half the latency of
the ST on LLM method. This deployment significantly re-
duced both costs and complexity, making it more scalable
for industrial applications. Due to its versatility, an Auto-
Training Portal (ATP) ecosystem is built around the LARA-
PL method (Figure 4). ATP enables seamless and continuous
improvements for multi-turn intent recognition system. Us-
ing online chat logs, local operations teams can update the
Knowledge Base (KB) by adding new intents and crafting
example queries. Subsequently, they can trigger CLARA for
pseudo-labeling multi-turn chat logs, generating data to train
lightweight models. Once training is complete, the models
are deployed through the portal for online A/B testing, creat-
ing an iterative cycle of improvement. For fair comparisons,
the intents and single-turn training data was kept consistent
across control and test groups.

Online Performance
We leverage the following two metrics:
1. Resolution rate (RR) which is measured by the rate of

user completing the answer flow, not transferring to live
agent, and not giving bad rating to the answer.

2. Customer Service Satisfaction (SCSAT) where users
will be asked about their satisfaction towards our chat-
bot for chatbot only sessions (no intervention from live
agents). The score is calculated by # good rated ses-
sions/(# good rated sessions + # bad rated sessions).



Figure 4: Online Deployment of Multi-turn Intent Classification model demonstrates our production architecture integrating
CLARA for automated training data generation. The system handles real-time inference while continuously improving through
automated training.

We use the selective concatenation method as the base-
line for all experiments, with paired t-test to evaluate statis-
tical significance.

ST on LLM In the SG market, ST on LLMs was deployed
to 50% of online traffic for three weeks, yielding ∼14k chat-
bot sessions per group. The test group exhibited a +2.19%
improvement in Customer Service Satisfaction (SCSAT),
but Resolution Rate (RR) declined by -0.11%. Neither re-
sult was statistically significant, indicating limited benefits
from ST given its resource-intensive nature.

CLARA The multi-turn dialogue model was replaced,
while single-turn models remained unchanged. Aggregated
results from over 108k chatbot sessions per group showed
statistically significant improvements: Resolution Rate (RR)
increased by +0.78% and Customer Service Satisfaction
(SCSAT) by +1.39% (p-value < 0.05). These gains translate
to overall session improvements of RR +0.47% and SCSAT
+0.84%, as multi-turn dialogues comprise 60.60% of total
sessions.

Furthermore, adding pseudo-labeled multi-turn data en-
hanced single-turn intent recognition. Substituting single-
turn dialogue models with CLARA models yielded an RR
improvement of +0.06% and a statistically significant SC-
SAT increase of +0.27%.

Ablation Study
Effect of Target Length
We investigate how the amount of information in ST gen-
eration target affects the intent recognition performance us-
ing two rather extreme approaches and their conversation se-
mantic fluidity.

Longer Target Length To achieve this, the model is
trained to summarize all queries in Q before outputting the
target r. For instance, the new output format of model will
be “You are asking about {summary}. So, the intent ti-
tle is {rn}”. The rationale is to utilize the summarization
ability of LLMs to better understand the context. For our
training data, the summaries are obtained by prompting the
original LLM backbones in a zero-shot manner. We chose

this over increasing the length of r statically to impose more
information on the model’s generation target. Empirically,
extending the generation target to include query summaries
decreases performance by 3.82%. While this approach en-
hances semantic coherence, excessive information overloads
the model, reducing its ability to focus on the core intent
classification task.

Shorter Target Length Inspired by (Wei et al. 2023b), we
compress rs by replacing with meaningless symbols. Com-
pressing target labels to purely symbolic representations re-
sults in a significant 8.91% performance drop. This high-
lights the importance of preserving semantic richness in tar-
get labels for generative fine-tuning. Effective compression
methods must retain key information from the original labels
to avoid loss in classification accuracy.

Impact of Self-Consistency in MTIC
Using our multi-turn test sets, we evaluate the performance
of MTIC with and without self-consistency checking. We
remove the samples with inconsistent outputs and calculate
the precision of the remaining samples. On average, 12% of
test samples will be removed in each market. Incorporating
self-consistency checking into MTIC evaluations improves
accuracy across all prompt variations, as shown in Table 4.
By removing approximately 12% of test samples with incon-
sistent outputs, this method effectively filters out erroneous
predictions, ensuring higher-quality pseudo-labels and more
reliable results. This ensures the quality of pseudo-labels.

Effect of Model Size
For fair comparison between LLM ST and CLARA, we
use vicuna-7b-v1.5 as the base model with prompt P and
Pformatted, without self-consistency. The results of LLM
ST method are taken from the best of each market, including
base models pre-trained on in-domain corpus. Table 5 com-
pares CLARA and LLM ST using models of the same size
(Vicuna-7B-v1.5) without self-consistency. Despite the sim-
pler pipeline, CLARA consistently outperforms LLM ST,
avoiding the complexity of multi-turn sample crafting. How-
ever, smaller models exhibit reduced instruction-following



Prompt SC BR ID MY PH SG TH TW VN avg
P ✘ 52.69% 61.48% 65.42% 54.50% 65.26% 60.96% 67.14% 77.90% 64.18%
P ✔ 58.59% 68.13% 69.93% 56.44% 69.58% 66.75% 71.30% 81.14% 69.11%
Psymbolic ✘ 51.88% 60.00% 64.57% 53.97% 65.26% 58.96% 65.44% 74.67% 62.92%
Psymbolic ✔ 56.63% 64.71% 68.48% 55.19% 68.77% 65.59% 71.61% 78.02% 67.27%
Pprepend ✘ 54.03% 61.75% 64.50% 53.44% 65.94% 61.55% 66.86% 75.81% 63.97%
Pprepend ✔ 59.49% 66.08% 68.60% 55.90% 68.85% 68.19% 71.79% 81.36% 68.43%
Pformatted ✘ 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%
Pformatted ✔ 59.24% 67.01% 69.47% 56.79% 68.81% 68.69% 72.35% 82.93% 69.12%

Table 4: Precision of CLARA variants after filtering inconsistent predictions demonstrates the effectiveness of Self-Consistency
(SC) across different prompt types. Self-Consistency improves accuracies by 4-5%, with Pformatted achieving the highest
precision (69.12%).

Method Prompt ID SG avg

LLM ST - 58.17% 63.23% 60.15%
CLARA P 60.44% 64.31% 61.96%
CLARA Pformatted 59.83% 64.04% 61.48%

Table 5: Results of LARA using 7B LLM.

capabilities, as demonstrated by the lower performance of
Pformatted compared to P . We observe that the perfor-
mance of CLARA while using Pformatted is lower than P .
As LLMs of smaller size could be weaker in instruction fol-
lowing, it implies that semantic meaning of the labels in
demonstrations are critical.

Related Work
Synthetic Data Generation
The scarcity of annotated dialogue data, particularly in low-
resource languages, has driven research into synthetic data
generation. Borisov et al. (2022) proposed a method lever-
aging auto-regressive generative models to create realistic
tabular datasets, highlighting their utility in data augmenta-
tion. Similarly, Li et al. (2023) demonstrated that synthetic
data generated by LLMs can significantly enhance model
performance in classification tasks. Tang, Laban, and Dur-
rett (2024) utilized synthetic data to craft challenging ex-
amples for fact-checking, improving the factual accuracy of
LLM outputs.

Modeling Multi-turn Dialogue Context
Multi-turn dialogue modeling is essential for dialogue un-
derstanding tasks. Early methods used bidirectional contex-
tual LSTMs (Ghosal et al. 2021) to capture context-aware
utterance representations for tasks such as MultiWOZ intent
classification (Budzianowski et al. 2018). Other approaches,
such as multi-channel graph convolutional networks, were
applied to query classification in E-commerce (Yuan et al.
2024). Recent advancements leverage pre-trained language
models (PLMs) as sentence encoders (Shen et al. 2021), par-
ticularly for emotion recognition in conversations (ERC).
For instance, Lee and Lee (2022) encoded both context and
speaker memory using PLMs, while Qin et al. (2023) in-
corporated multi-turn information from utterances and di-

alogue structure through fine-tuning. Despite their effec-
tiveness, these methods depend heavily on multi-turn train-
ing datasets, which are difficult to acquire in real-world
e-commerce settings (Liu and Fu 2024). In contrast, our
approach employs LLMs within an augmentation-based
pipeline to generate multi-turn data, enabling zero-shot in-
tent classification using smaller models.

LLM on Text Classification
Recent studies investigated the performance of LLMs as
domain-specific text classifiers. Wei et al. (2023a) high-
lighted the benefits of fine-tuning LLMs on domain-specific
datasets, improving performance in legal document review.
Wei et al. (2023b) introduced symbol tuning, where natu-
ral language labels were replaced with unrelated symbols
during fine-tuning to enhance classification. Loukas et al.
(2023) analyzed the trade-offs between performance and
cost when using LLMs for text classification. Liu, Lee, and
Lim (2025) employed GPT-4o to perform zero-shot clas-
sification on multi-level semi-structured text with retrieval
augmentation. In social science research, Chae and David-
son (2023) investigated LLMs for sociological text classi-
fication, demonstrating their potential. Our work differs by
compressing longer intent labels into semantically meaning-
ful phrases, enabling easier generation and improving accu-
racy for tasks with a large number of classes.

Conclusion
Multi-turn intent classification in production faces unique
challenges, including highly variable and often lengthy in-
tents. To address these issues, we introduce Symbol Tuning,
which fine-tunes LLMs with compressed intents and im-
proves classification accuracy by 5.09% compared to orig-
inal intents. We also propose the CLARA pipeline for gen-
erating high-quality multi-turn datasets, significantly reduc-
ing annotation costs by automating pseudo-labeling based
on users’ latest utterances in dialogue history, thereby im-
proving model iteration efficiency and enabling scalable de-
ployment and online inference. Looking ahead, we plan to
incorporate additional signals such as user profiles and or-
der history into CLARA to support more diverse dialogue
tasks, and to explore cross-lingual transfer and advanced to-
kenization techniques for low-resource languages.
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